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.	Introduction. The Feistel cipher and the Braid Group  

 
 The main aim of this paper is to introduce a new symmetric cipher, which we call 
the Artin-Feistel cipher.  The classical Feistel cipher/network (see [H]) lies at the heart of 
many important block ciphers, notably the Data Encryption Standard (see  [C], FIPS-Pub. 
46), and has been studied extensively for some time. One natural way to look at the core 
structure of the original cipher (and the later extensions) is from the point of view of 
geometric braids. In doing so a whole new level of complexity and security can be 
brought into the discussion and the Artin-Feistel symmetric cipher, whose underlying 
structure is a multi-strand geometric braid, emerges as unifying approach. 
 
 The Feistel cipher can be distilled to the following description. Let , , , … , ℓ 
denote a (round) function and a collection of sub-keys, and let ∪  denote the 
decomposition of a plaintext block  into two equal pieces , . The ciphertext is 
obtained by concatenating a sequence of steps the first of which takes the form, 
 
 
 
 
 
 
 
 
 
 
 
 
 
where ⨁ denoted the operation x/or. The output of the above step, ,  are then input to 
the second step in the sequence, which takes the form.	
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The process of evaluation of the functions and ⨁ and then applying a permutation 
continues until the collection of sub-keys is exhausted. When viewed from a distance, the 
underlying skeletal structure of this concatenation of ciphering steps takes the form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This sequence of twists is, by definition, a 2-strand geometric braid. E. Artin introduced 
the concept of a geometric braid, and more generally the -stranded the Braid Group,  
(see [A], [B]). An example of a 5-stranded braid 	is given below: 
 
 
 
 
 
 
Given two -strand braids, it is intuitively clear that concatenating them produces a third 
braid. This operation gives the set of -strand braids, , a group structure: continuing 
with the 5-strand case, the identity element of 	is given by,  
 
 
 
 
and the inverse of any braid is obtained by first vertically flipping the braid, and then 
reversing the crossings. In the case above, we see that 
 
 
 
 
 
 
 
 
 

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

	=		

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
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and we verify that 1: 
 
 
 
 
 
 
 
 
 
 
We will require one further observation. Every braid is a concatenation of elementary 
crossings of the strands	  and 1 and the inverses of said crossings: if we let 	 
denote the braid 
 

 
 
 
then the braid group  is generated by the braids |	 1, … , 1 .	 
 
 
 
2. The Artin-Feistel Cipher 
 
 The core idea of the Artin-Feistel cipher is to take a braid ∈ , and insert 
Feistel steps within   prior to each crossing. The original Feistel cipher is easily 
recovered from the Artin-Feistel cipher by simply choosing  to be the ℓ-th power of the 
simple twist  that generated the 2-strand braid group : 1 ℓ ∈ .  When we 
work with elements of the N-strand braid group, ∈ , the geometric braid  is 
transformed into an encryption mechanism.  
 
 Proceeding now to a detailed description, let ∪ ∪⋯∪  denote 
a decomposition of a plaintext  into blocks  of equal size. Let ∈  be a 
nontrivial positive element of the  - strand braid group, i.e., an element of the form 
 

	 ⋅ ⋅ 	⋯ ⋅ ℓ , 
 

where ℓ is the length of , and each  is an Artin generator, and 1 1 for 
1,… , ℓ. A given	 , which appears in , may appear more than once in .  The 

number of times  appears in , is termed the frequency of  in , and is denoted  
 
, .   

 
 

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅	 =		 =	

⋅ ⋅ ⋅ ⋅ ⋅⋯ ⋯
⋅ ⋅ ⋅ ⋅ ⋅⋯ ⋯
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For each appearance of the generator  in , the position, denoted, ,  and 
defined by  
 

, Card 	|	 , 1 ,  
 
indicates which appearance in  it is. For example if 2 ⋅ 1 ⋅ 3 ⋅ 1 , we 
have 1 , 2, and 1, 1, 2, 1, 3, 	1, and 4, 	2. 
 
 For 1,… , 1, let  be a sequence of (round) functions, and let 	denote 
a collection of (not necessarily distinct) sub-keys which take the form,	   
 

			 , 1 , , 2 , … , , , . 
 
Setting 

0,1 , 0,2 ,				…			 , 0, , 
 
the cipher will produce a sequence of ℓ length  outputs, each of which has the same 
length as the plaintext: the output of the first step of the cipher will take the form, 
 

1,1 , 1,2 , … , 1, . 
 
The output of the second step will take the form, 
 

2,1 , 2,2 , … , 2, , 
 

and, continuing in this manner, the output of the final step, 
 

ℓ, 1 , ℓ, 2 , … , ℓ, , 
 
will be the ciphertext. Since the first crossing in the braid  is given by , we have 
1, 1, and the first step in the cipher is dictated by the diagram below. 

  
 
 
 
 
 

 
 

 
 

 
 
 
 
 

0,1 	 0, 	 0, 1 		 0, 	⋯	⋯	

	

1, 1 		
0, ⊕ 0, 1 	, , 1 		 	

1, 	
	 0, 1 		

, , 	 , , 		⋯	⋯	

0, ⊕ 0, 1 , , 1 	
	

0, 1 		

⊕

, 1
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Thus the output of the first step of the cipher is given by, 
 

1, 	
																							 0, 																																									 	 	 , 1		

0, 1 																																										 	
0, ⊕ 0, 1 , , 1 						 	 1

			 

 
 
This output sequence, 1,1 , 1,2 , … , 1, , then becomes the input of the second 
diagram: 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note we are assuming that , and hence ,1) is the sub-key used in the 
above diagram. Were 	 , then ,2) would be the sub-key used. Continuing 
in this manner we obtain the identities: for 1, 2, … , ℓ 
 
 
 

, 	

																							 1, 																																									 	 	 , 1		

1, 1 																																																	 	

1, ⊕ 1, 1 , , , 						 	 1

			 

 
 
The ciphertext, ℓ, 1 , ℓ, 2 , … , ℓ, , is thus obtained after 	ℓ incremental steps 
of the Artin-Feistel cipher are performed.   

1,1 	 1, 	 1, 1 		 		 1, 	⋯	⋯	

2,1 1,1, 	 		 , , 		⋯	⋯	

1, ⊕ 1, 1 , , 1

⊕ 	

, 1

		 1, 1 		

2, 	
1, 1 		

	

2, 1 		
1, ⊕ 1, 1 	, , 1 				
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In order to reverse the Artin-Feistel cipher we will takes the inverse braid, which 

takes the form  
	 ℓ ⋅ ℓ ⋅ 	⋯ ⋅ , 

 
and inserting Feistel steps after each crossing (recall Feistel steps are inserted before each 
crossing during ciphering). In the case of a 2-stranded braid, this is precisely the classical 
method of recovering the plaintext from the ciphertext, i.e., this reverses the Feistel 
cipher. To see this note that by concatenating the final Feistel step with a reverse of the 
last crossing followed by the Feistel step associated with said crossing the ciphering is 
reversed. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 
 
 
 
 

Reversing the Artin-Feistel cipher, although more complex, works in much the 
same way. Due to that intrinsic structure of the inverse of the braid, 	 ℓ ⋅

ℓ ⋅ 	⋯ ⋅ , the order of the crossings is reversed. This implies that in the 
deciphering process both the sequence of functions used in the Feistel steps and the 
sequence of sub-keys inputted into those functions will be the reverse of the sequences 
used to cipher.  Just as the ciphering process required ℓ length  steps,  the 
deciphering will likewise require the same number.  

 
 
 
 

ℓ ℓℓ 1

⨁	

ℓ 1⨁	 ℓ 1, ℓ 1 ℓ 1

ℓ ℓ 1	 ℓ ℓ ⨁ ℓ , ℓ

⨁

ℓ ℓ ⨁	 ℓ , ℓ ℓ ℓ 1	

ℓ

ℓ ℓ
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The output of the final step of the Artin-Feistel cipher is given by 
 

ℓ, 1 , ℓ, 2 , … , ℓ, , 
 
will be the input of the first step of the deciphering process, which is given in the diagram 
below. 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Recall that, by construction, 
 

ℓ, ℓ 1,  if 	 	 ℓ, ℓ 1,	  
 

ℓ, ℓ ℓ 1, ℓ 1 ,  
 

and 
ℓ, ℓ 1 	 ℓ 1, ℓ ⊕

ℓ
ℓ 1, ℓ 1 , ℓ, ℓ, . 

 
 

Hence the ℓ	and ℓ 1 entries in the output of the first step in the deciphering process 
can be simplified: 

ℓ, ℓ 1 ⊕ 	 ℓ, ℓ , ℓ, ℓ,  
 

ℓ 1, ℓ ⊕
ℓ

ℓ 1, ℓ 1 , ℓ, ℓ, ⊕
ℓ
	 ℓ, ℓ , ℓ, ℓ,  

 
ℓ 1, ℓ ⊕

ℓ
ℓ 1, ℓ 1 , ℓ, ℓ,  

⊕
ℓ
	 ℓ 1, ℓ 1 , ℓ, ℓ,  

 
ℓ 1, ℓ , 

and 
ℓ, ℓ ℓ 1, ℓ 1 . 

 

M(ℓ, 1 	 ℓ, ℓ 1 	 ⋯⋯	

	
ℓ, ℓ 1 ⊕

ℓ
	 ℓ, ℓ , ℓ, ℓ, 		

M(ℓ 1,1 	 		M(ℓ 1, 	⋯⋯	

⊕	 ℓ

ℓ
	

ℓ, ℓ, 	

ℓ, ℓ 	

	 ℓ, 	
		

ℓ, ℓ 1 	 ℓ, ℓ 	

ℓ, ℓ 	
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We thus conclude that the output of the first step in the deciphering process is given by 
 
 

ℓ 1,1 , ℓ 1,2 , … , ℓ 1, , 
 

which is the input to the ℓth step of the ciphering process, i.e., we have reversed the last 
step of the Artin-Feistel cipher. Continuing in this way the original Plaintext is recovered. 
 
 
 
 
3.   Security Discussion. 
 
 Any specific instance of the Artin-Feistel cipher depends on the precise 
knowledge of the braid  being used, which will be part of the secret key.  In general, the 
number of possible positive braids of length ℓ, in the braid group , is given by 

1 ℓ. Not every braid is a good candidate for a secure cipher: each generator of  
must appear sufficiently often to insure the entire plaintext is thoroughly obscured.   

 
Observe that it is easy to choose a braid which reduces the Artin-Feistel cipher to 

a sequence of classical Feistel ciphers running in parallel: if for example 6, take the 
braid  

 
1 ⋅ 3 ⋅ 5 . 

 
 
Visually, if 3,	then  is given by 
 
 
 
 
 
 
 
 
 
To break a cipher based on such a braid would require each of the Feistel ciphers being 
run in parallel to be broken. Observe that in the classical Feistel cipher with 2  rounds, 
each plaintext block is obscured every time it moves to the right, and remains unchanged 
if it moves to the left. Thus each plaintext block is obscured  times. Given that the Artin-
Feistel cipher can reduce to a sequence of classical Feistel ciphers running in parallel, it is 
clear that when choosing the braid  on which to base a cipher, each of the  plaintext 
blocks should be obscured by the cipher  times. 
 
 In order to produce a braid whose cipher will satisfy this condition consider the 
following example of a braid : 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Observe that the path emanating from the point labeled 1 on the top row (and ending at 
the point labeled 4 on the bottom row), moves to the right three times. The path starting 
at 2 only moves to the right one time on its way to the bottom row. The paths emanating 
from point 4 and 5 on the top row don’t move to the right at all. An Artin-Feistel cipher 
based on the above braid would leave the plaintext blocks ,  untouched in the 
final ciphertext, which may be undesirable. 
 
 The above discussion is the motivation for the following definition. Given an 
∈ 1, 2, … , ,	we define the total right displacement of  in the braid , denoted 

 
, , 

 
to be the total number of times the path emerging from  moves to the right. Observe that 
if , , then an Artin-Feistel cipher based on  obscures each block of plaintext  
times as required.  Thus we consider the following subset of , which will serve as our 
search space: 
 

, 	 ∈ | , 		for	 1,2, … , 	 . 
 

A brute force search on the Artin-Feistel cipher based on a braid in the search space 
, , is bounded below by  

 
Card , . 

 
 

We note that the length of any braid , which is the Artin-Feistel equivalent to the 
number of rounds in a classical cipher, is given by the sum, 
 

length , ⋅ , 

 
each braid in ∈ , .  
 
  
 
 
 

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

1 2 3 54

1 2 3 54
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4. The Search Space: , . 
 
 

It is possible to obtain a lower bound for the size of the search space by explicitly 
constructing a large class of elements within it. Suppose we have two elements 

 
, ∈ , 1 , 

 
and we consider their product, ⋅ . Since each path commencing at 1, 2, … ,  
moves to the right once in , and then once in , each path commencing at  will move 
to the right twice in the product ⋅ , i.e.,  

⋅ ∈ , 2 . 
 

More generally, the product of  braids in , 1 , , , … , ∈ , 1 , will be an 
element of the search space , : 
 

⋅ 	 ⋅ ⋯ ⋅ ∈ , . 
 

Observe that the number of such products ⋅ 	 ⋅ ⋯ ⋅  is given by 
 

Card , 1 . 
 

Thus we are reduced to identifying a collection braids lie in the set , 1 . To begin, 
observe that the collection of 1	braids, which we will refer to as basic elements,  
 

1 ⋅ 2 ⋅ ⋯ ⋅ 1 , 
 

1 	 ⋅ 2 ⋅ ⋯ ⋅ 1  
 
⋮ 
 

1 	 ⋅ 2 ⋅ ⋯ ⋅ 1  
 

all have the required property that each path commencing at 1, 2, … ,  moves to the 
right once. Now suppose we express  as the sum  
 

, 
 

where , 2. Then by taking basic elements ∈ , 1 , ∈ , 1  and 
juxtaposing them (  left,  to the right), we obtain an element in 	, 1 . 
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For example, 7 = 3 + 4, 2 ⋅ 1 ∈ 3,1 , and 3 ⋅ 2 ⋅ 1 ∈ 4,1  
juxtaposing them we obtain, 
 

2 ⋅ 1 ⋅ 6 ⋅ 5 ⋅ 4 ∈ 		 7,1 . 
 

This method produces various braids: since 3,1  contains 2 basic elements, and 4,1  
contains 3 basic elements, this one decomposition of 7 as a sum yields 6 elements in 
7,1 . More generally, we have found a connection between braids in , 1  and 

ordered partitions (i.e., 	is considered distinct from 	 	of the 
number 	which do not involve either 0 or 1. Each partition of  
 

⋯ , 
 

will produce  
1 ⋅ 1 ⋅ ⋯ ⋅ 1  

 
elements in , 1 .  
 
 The number of ordered partitions of  grows rapidly. In the case 12, the 
number of elements of , 1  that the above method generates is given by 
 

2 1024. 
  
Recalling the above discussion, the size of the search space ,  is bounded below by 
 

Card , 1  
 
Thus, in the case	 12, the search space	 12,  is bounded below by 
 

2 ⋅ , 
 

and, hence, we see that it is possible to encrypt 12 blocks with a 2  security level using 
a braid of length 8 ⋅12 = 96. Observe that the length of the braid is the number of rounds 
in the encryption process. In contrast triple DES requires 48 rounds to encrypt 2 blocks. It 
follows that, in this case, Artin –Feistel is a fast as single DES.  
 
 
 
 
 
 
 
 
 
 
 



Page	12	

5. References. 
 
Artin, Emil (1947), "Theory of braids", Annals of Mathematics, 2nd Ser. 48 (1): 101–126 
 
Birman, Joan S. (1974), Braids, links, and mapping class groups, Annals of Mathematics 
Studies, 82, Princeton, N.J.: Princeton University Press 
 
Coppersmith, Don. (1994). The data encryption standard (DES) and its strength against 
attacks. IBM Journal of Research and Development, 38(3), 243–250. 
 
Horst Feistel, "Cryptography and Computer Privacy." Scientific American, Vol. 228, No. 
5, 1973. 
 
FIPS-Pub.46, National Bureau of Standards, Data Encryption Standard. National Bureau 
of Standards, U.S. Department of Commerce, Washington D.C., January 1977. 
 
 
 
 
 
 
6. Author Contact Information. 
 
Iris Anshel 
ianshel@securerf.com 
 
Dorian Goldfeld 
goldfeld@optonline.net 
 
 
 
 
 
 
 
 
 
 
 
 
This material is based upon work supported by the National Science Foundation under 
Grant No. 0924363.   
 
Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the author(s) and do not necessarily reflect the views of the National Science 
Foundation. 


