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Abstract—Number theoretic public-key solutions are sub-
ject to various quantum attacks making them less attractive
for longer-term use. Certain group theoretic constructs
show promise in providing quantum-resistant cryptographic
primitives. We introduce a new protocol called a Meta
Key Agreement and Authentication Protocol (MKAAP) that
has some characteristics of a public-key solution and some
of a shared-key solution. Then we describe the Ironwood
MKAAP, analyze its security, and show how it resists
quantum attacks. We also show Ironwood implemented on
several IoT devices, measure its performance, and show how
it performs better than existing key agreement schemes.

Index Terms—Group Theoretic Cryptography, E-
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I. INTRODUCTION

Group theoretic cryptography is a relatively new dis-

cipline and overviews can be found in the two recent

monographs [11], [19]. A number of group theoretic

key agreement protocols have been introduced in the

last two decades, including [3] and [15], but attacks on

the conjugacy search problem such as those appearing

in [8], [9], [13] suggest that these types of schemes

may not be practical over braid groups in low-resource

environments. To overcome these deficiencies, in this

paper, we introduce the notion of a Meta Key Agreement

and Authentication Protocol (MKAAP) (see §IV) which

has many of the properties of a public-key method but

relies on the clever distribution of certain private keys.

Starting with a quantum-resistant one-way function

based in braid group theory we’ve constructed an

MKAAP which we present in this paper. This MKAAP

is very robust and is immune from all known attacks

introduced in group theoretic cryptography and delivers

linear time performance on low-footprint processors.

Previous Work

In 2006 [1] introduced a key agreement protocol based

in group theory (specifically the braid group) that with-

stood several attacks over the past decade. First [18]

determined that if braids are too short then it’s possible

to find the conjugating factor and use that to break the

system. However it was pointed out in [12] that in practice

the braids are long enough that this attack can never

actually succeed. It’s akin to using Fermat to factor short

RSA keys, which becomes impractical at “secure” sizes.

Second, [14] showed a linear algebra attack (KTT) that

would allow an attacker to determine part of the private

key data. However, [10] showed that this is just a class

of weak keys and by choosing the private key data in a

specific way this attack is defeated.

More recently [6] built upon the defeated KTT attack,

and using all of the public information were able to, after

a large precomputation, spend several hours to reconstruct

the shared secret. This attack not only required access to

the public parameters but also both public keys (including

their permutations). It was shown in [2] that the attack

work grows as the size of the permutation order grows as

well as the size of the braid group.

Still, none of these attacks targeted the underlying

hard problems in the braid group, or attempted to at-

tack the one-way function introduced in [1] called E-

Multiplication.

Our Contribution

This paper introduces the Ironwood meta key agree-

ment and authentication protocol whose security is based

on hard problems in group theory. Ironwood leverages the

one-way function, E-Multiplication, but creates a different

construction that removes some of the public information

required to mount any of the previous attacks. In addition

to being immune from previous attacks, Ironwood is also

quantum resistant. Specifically, Shor’s quantum algorithm

[20] which has been shown to break RSA, ECC, and sev-

eral other public key crypto systems does not seem appli-

cable for attacking Ironwood. Further, Grover’s quantum

search algorithm [21] is not as impactful on Ironwood due

to the fact that the running time of Ironwood is linear in

the key length.

This paper first reviews the braid group and colored

Burau representation. Next it reviews E-Multiplication,

and then introduces the meta key agreement and authen-



tication protocol. Following that it introduces Ironwood

and presents a security analysis.

II. COLORED BURAU REPRESENTATION OF THE BRAID

GROUP

Let BN denote the braid group on N strands with Artin

presentation

BN =

〈

b1, b2, . . . , bN−1

∣

∣

∣

∣

σiσjσi = σjσiσj for |i− j| = 1
σiσj = σjσi for |i− j| ≥ 2

〉

.

Every β ∈ BN determines a permutation σβ ∈ SN ,

the group of permutations of N letters, as follows. For

1 ≤ i < N , define σi ∈ SN as the ith simple transposition,

which maps i → i+1, i+1 → i, and leaves the elements

{1, . . . , i−1, i+2, . . . , N} fixed. We may take σbi = σi.
Then if β = bǫ1i1 bǫ2i2 · · · bǫkik , (with ǫi = ±1), it is easy to

see that σβ = σi1 · · ·σik .

The colored Burau representation of the braid group

was introduced by Morton in [16] in 1998, but we

shall make use of a variation of Morton’s original rep-

resentation. Associate to each Artin generator bi, with

1 ≤ i < N , a colored Burau matrix CB(bi) where

CB(b1) =

















−t1 1
. . .

1
. . .

1

















,

CB(bi) =

















1
. . .

ti −ti 1
. . .

1

















(

for 1 < i < N
)

.

(1)

We similarly define CB(b−1
i ) by modifying (1)

slightly:

CB(b−1
1 ) =

















1 − 1
t2

. . .

1
. . .

1


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









,

CB(b−1
i ) =




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
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1
. . .

1 − 1
ti+1

1
ti+1

. . .

1


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











(

for 1 < i < N
)

.

(2)

Thus each braid generator bi (respectively, inverse

generator b−1
i ) determines a colored Burau/permutation

pair (CB(bi), σi) (resp., (CB(b−1
i ), σi)). We now wish

to define a multiplication of colored Burau pairs such that

the natural mapping from the braid group to the group of

matrices with entries in the ring of Laurent polynomials

in the ti is a homomorphism.

Given a Laurent polynomial

f(t1, . . . , tN ) ∈ Z[t±1
1 , t±1

2 , . . . , t±1
N ],

a permutation in σ ∈ SN can act (on the left) by

permuting the indices of the variables. We denote this

action by f 7→ σf :

σf(t1, t2, . . . , tN ) := f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to N × N matrices over

Z[t±1
1 , t±1

2 , . . . , t±1
N ] denoted, M, by acting on each entry

in the matrix, and denote the action in the same way.

The general definition for multiplying two colored Burau

pairs is now defined as follows from the definition of the

semidirect product M ⋊ SN . Given b±i , b
±

j , the colored

Burau/permutation pair associated with the product b±i ·b±j
is

(CB(b±i ), σi) ◦ (CB(b±j ), σj) =
(

CB(b±i ) · (σiCB(b±j )), σi · σj

)

.

Given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

with ǫi = ±1 for 1 ≤ i ≤ k, the colored Burau pair

(CB(β), σβ) is given by

(CB(β), σβ) =

= (CB(bǫ1i1 ) ·
σi1CB(bǫ2i2 ) ·

σi1
σi2CB(bǫ3i3 )) · · ·

σi1
σi2

···σik−1CB(bǫkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).
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One checks that ΠCB satisfies the braid relations and,

hence, defines a representation of BN .

III. E-MULTIPLICATION

E-Multiplication was first introduced in [1] as a one-

way function used as a building block to create multiple

cryptographic constructions. We recall its definition here.

Let Fq denote the finite field of q elements. A set of

T -values is defined to be a collection of non-zero field

elements:

{τ1, τ2, . . . , τN} ⊂ F
×

q .

Given a set of T -values, we can evaluate any Laurent

polynomial f(t1, t2, . . . , tN ) to obtain an element of Fq:

f(t1, t2, . . . , tN ) ↓t-values := f(τ1, τ2, . . . , τN ).

We extend this notation to matrices over Laurent polyno-

mials in the obvious way.

With all these components in place we can now define

E-Multiplication. By definition, E-Multiplication is an

operation that takes as input two ordered pairs,

(M,σ0), (CB(β), σβ),

where β ∈ BN and σβ ∈ SN as before, and where M ∈
GL(N,Fq), and σ0 ∈ SN . We denote E-Multiplication

with a star: ⋆. The result of E-Multiplication, denoted

(M ′, σ′) = (M,σ0) ⋆ (CB(β), σβ),

will be another ordered pair (M ′, σ′) ∈ GL(N,Fq)×SN .

We define E-Multiplication inductively. When the braid

β = b±i is a single generator or its inverse, we put

(M,σ0) ⋆
(

CB(b±i
)

, σb
±

i
) =

(

M · σ0
(

CB(b±i
)

) ↓t-values, σ0 · σb
±

i

)

.

In the general case, when β = bǫ1i1 b
ǫ2
i2
· · · bǫkik , we put

(M,σ0) ⋆ (CB(β), σβ) =

(M,σ0) ⋆ (CB(bǫ1i1 ), σbi1
) ⋆ (CB(bǫ2i2 ), σbi2

)⋆

· · · ⋆ (CB(bǫkik ), σbik
),

(3)

where we interpret the right of (3) by associating left-

to-right. One can check that this is independent of the

expression of β in the Artin generators.

IV. META KEY AGREEMENT AND AUTHENTICATION

PROTOCOL (MKAAP)

We now introduce the notion of a meta key agreement

and authentication protocol which is not a true public-key

crypto system but has many of the features of a public-key

cryptosystem. Specifically, while it does require secure

provisioning of each device by a Trusted Third Party

(TTP), once provisioned, devices can authenticate to each

other offline without further support. By a device, we

mean a Probabalistic Polynomial-Time Turing Machine

(PPTM) that can execute a cryptographic protocol and be

capable of transmitting and receiving messages.

Definition (MKAAP) Assume there is a network consist-

ing of a Home Device (HD) and a set of other devices

(Di, i=1,2,3,. . . ) that communicate with the HD over an

open channel1. Assume that there is a TTP which has

distributed secret information to the HD and the other

devices. An MKAAP is an algorithm with the following

properties:

• The MKAAP allows the HD to authenticate (and/or

be authenticated by) and obtain a shared secret with any

Di over an open channel.

• It is infeasible for an attacker, eavesdropping on

the open communication channel between the HD and

a device Di, to obtain the shared secret assuming the

attacker does not know the secret information distributed

by the TTP.

• The private keys of the Di are provided by the TTP,

fixed, and are not known to the HD. The TTP may update

the keys over time.

• The private key of the HD may be ephemeral and is

not known to any of the Di’s, or it may be provided by

the TTP.

• If an attacker can break into one of the devices Di

and obtain its private key, then only the security of that

particular device is breached, all other devices remain

secure.

• An attacker is assumed to be a PPTM and/or a

machine capable of running a quantum method like Shor

[20] or Grover [21], capable of passive eavesdropping

on all communications between the HD and Di, and can

attempt to impersonate an HD or Di, using the other side

as an oracle.

V. IRONWOOD MKAAP

We now describe the Ironwood MKAAP. It may be

assumed that the following information is publicly known.

Public Information:

• The braid group BN for a fixed even integer N .

• A finite field Fq of q elements.

• A non-singular matrix m0 ∈ GL(N,Fq).
• The operation of E-multiplication based on BN and

Fq .

Next, we discuss the initial distribution of secret infor-

mation by the TTP.

1While the open channel may be a unicast or multicast medium,
authentication between HD and Di is 1:1.
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TTP Data Generation and Distribution:

The TTP creates two sets of commuting conjugates:

Cα = {zα1z
−1, zα2z

−1, . . . , zαrz
−1},

Cγ = {zγ1z−1, zγ2z
−1, . . . , zγrz

−1} ∈ BN ,

where some portion of the αi are purebraids (i.e., have a

trivial permutation), and one set of T -values:

T = {τ1, τ2, . . . , τN} ⊂ Fq, (τi 6= 0, 1).

The TTP writes the first set of conjugates Cα and the set

of T -values into the memory of the Home Device (HD).

Next, the TTP creates braid words βi ∈ BN (for

i = 1, 2, . . .) which are random products of conjugates

from the second set Cγ (chosen according to the standard

normal distribution) and creates the colored Burau pairs

(βi, σi) where σi is the permutation associated to βi.
For each such (βi, σi), the TTP chooses a random non-

singular matrix

Ci =

N−1
∑

k=0

ck,im
k
0 ,

(

with ck,i ∈ Fq

)

,

(where the ck,i ∈ Fq are chosen according to the standard

normal distribution) and using the T -values performs the

E-multiplication

Pubi := (Ci, Id) ⋆ (βi, σi) = (CiMi, σi).

Here Id is the identity permutation and Mi ∈ GL(N,Fq).
Finally, the TTP creates a certificate Certi which contains

a digitally signed copy of Pubi and writes Certi and Ci

into the memory of Di, the ith device in the network.

Once the TTP distribution is completed authentication

and key agreement between the Home Device and the

other devices in the network may begin. A key assumption

is that there is only one Home Device (HD) and that

the secret information on the HD is secure and cannot

be obtained by any adversary. The protocol proceeds as

follows.

Ironwood Authentication and Key Agreement Protocol

Step 1: The device Di sends HD the certificate Certi
which contains a copy of Pubi which has been digitally

signed by the TTP. Here Pubi is the public key of Di and

the matrix Ci is the private key of Di.

Step 2: The HD generates two ephemeral non-singular

matrices

C =

N−1
∑

k=0

ckm
k
0 , C ′ =

N−1
∑

k=0

c′km
k
0 ,

(

with ck, c
′

k ∈ Fq

)

.

Step 3: The HD generates an ephemeral permutation

σ and two ephemeral braids β, β′ which are random

words in Cα and which have the same permutation

σ = σβ = σβ′ . This can be accomplished efficiently by

first generating a braid using the first half of conjugates,

and then create the second braid by using the same set of

conjugates and adding choices from the set of conjugates

where αi are purebraids.

Remark: This completes the construction of the

ephemeral part of the private key of the HD which consists

of C,C ′, β, β′, σ. The T -values and the set of conjugates

Cα are also part of the private key of the HD and must

be treated as confidential information.

Step 4: Using the T -values, the HD computes the

following two E-multiplications:

(C, Id) ⋆ (β, σ) := (CM,σ),

(C ′, Id) ⋆ (β′, σ) := (C ′M ′, σ).

Step 5: The HD has received Pubi = (CiMi, σi)
in the signed digital signature sent by Di. Next, using

the T -values, the HD computes the following two E-

multiplications:

(CCiMi, σi) ⋆ (β, σ) := (Y, σiσ),

(C ′CiMi, σi) ⋆ (β
′, σ) := (Y ′, σiσ).

Step 6: The HD computes:

s = (N/2)
th

column of the matrix Y,

s′ = (N/2)
th

column of the matrix Y ′.

Step 7: The HD sends Di the pair:
(

C ′M ′M−1C−1, s
)

.

Step 8: The device Di computes the matrix and vector

multiplications:

s′ = Ci

(

C ′M ′M−1C−1
)

C−1
i · s

which it can do since it knows its private key Ci and has

received C ′M ′M−1C−1 and s from the HD.

Shared Secret: The shared secret is the column vector

s′ known to both HD and Di.

Step 9: The final step is to authenticate the device Di.
Mutual authentication can be established by checking that

the HD and Di have obtained the same shared secret.

This is because the device Di has sent the HD the signed

certificate containing a copy of its public key and the
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unique HD is the only entity with access to the secret

conjugate material and T -values enabling it to produce

the correct response. Methods for doing this, such as

using a hash to create a validation value or using a

nonce and Message Authentication Code (MAC) in a

challenge/response protocol, are well known, so we do

not reproduce them here.

It is not at all obvious that the column vector s′

produced by the HD and Di have to be the same. We

now provide a proof of this.

First of all, the braids β and β′ commute with βi,

since they are formed from the sets of conjugates Cα, Cγ ,

respectively, and these sets of conjugates commute. It

follows from step 5 that

(CCiMi, σi) ⋆ (β, σ) =
(

CiCM,σ
)

⋆ (βi, σi)

= (Y, σiσ),

(C ′CiMi, σi) ⋆ (β
′, σ) =

(

CiC
′M ′, σ

)

⋆ (βi, σi)

= (Y ′, σiσ).

Now, define an unknown matrix X by the formula

(1, σ) ⋆ (βi, σi) = (X,σi) .

It follows that

Y = CiCMX, Y ′ = CiC
′M ′X.

Next, define a column vector x where

x = (CiCM)
−1 · s.

The column vector x is just the (N/2)
th

column of the

matrix X . Hence

s′ = CiC
′M ′ · x = CiC

′M ′M−1C−1C−1
i · s.

VI. PRELIMINARY SECURITY ANALYSIS OF

IRONWOOD

The Ironwood protocol is an outgrowth of the Alge-

braic EraserTM key agreement protocol (AEKAP) first

published in [1] in 2006. The security of the AEKAP was

based on the difficulty of inverting E-multiplication and

the hard problem of solving the simultaneous conjugacy

search problem for subgroups of the braid group. The

AEKAP had withstood numerous attacks (see [8], [9],

[10], [12], [13], [18]) in the last 10 years. However, the

recent successful attack of Ben-Zvi, Blackburn, Tsaban

(BBT) [6], for small parameter sizes, requires an increase

in key size (see [2]) to make AEKAP secure against the

BBT attack.

The Ironwood protocol was designed to be totally

immune to the BBT attack [6] without compromising

on key size, speed or power consumption. A necessary

requirement for the security of Ironwood is that the T -

values which are distributed to the Home Device cannot

be obtained by an adversary. The T -values are not on any

of the other devices Di in the network. Without knowing

the T -values the BBT attack [6] cannot proceed at all.

It is also clear that the Ironwood protocol satisfies the

last requirement of an MKAAP that if an attacker can

break into one of the devices Di and obtain its private key,

then only the security of that particular device is breached,

all other devices remain secure. This is because the only

secret information on the device Di is the private key Ci.
Knowledge of Ci has no affect on the key agreement and

authentication protocol between the HD and other devices

Cj with j 6= i.
We now present a preliminary informal security anal-

ysis of Ironwood.

Reversing E-multiplication is Algorithmically Hard

Strong support for the hardness of reversing E-

Multiplication can be found in [17] which studies

the security of Zémor’s [23] hash function h :
{0, 1}∗ → SL2(Fq), with the property that h(uv) =
h(u)h(v), where h(0), h(1) are fixed matrices in SL2(Fq)
and uv denotes concatenation of the bits u and v.

For example a bit string {0, 1, 1, 0, 1} will hash to

h(0)h(1)h(1)h(0)h(1). Zemor’s hash function has not

been broken since its inception in 1991. In [17] it is shown

that feasible cryptanalysis for bit strings of length 256 can

only be applied for very special instances of h. Now E-

Multiplication, though much more complex, is structurally

similar to a Zémor-type scheme involving a large finite

number of fixed matrices in SL2(Fq) instead of just two

matrices h(0), h(1). This serves as an additional basis for

the assertion that E-Multiplication is difficult to reverse.

Invalid Public-Key Attack

We now consider an invalid public-key attack of the

type presented in [7]. Such an attack assumes that an

adversary can impersonate the Home Device (HD) and

run the Ironwood authentication protocol (using invalid

public keys) with a device Di.
This type of attack can be easily defeated (see [5])

provided the Di uses a hash to create a validation value

that does not reveal the shared secret in any way or the Di

uses a nonce and Message Authentication Code (MAC)

in a challenge/response protocol.

Consider now the reverse case where a rogue device

Di is trying to attack the HD by sending an invalid

public key to the HD. If the HD reveals s to a rogue Di

using an invalid public-key attack it may lead to potential

leakage. There are two approaches to protect against an

invalid public-key attack against the HD. In the first case,

the device Di would have its public key signed by a

trusted CA/TTP. This would allow the HD to check that

the public key of the device Di is valid by validating
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the certificate. If the certificate is not valid the protocol

terminates. This is the method we propose in Step 1 of

the Ironwood Protocol. Next, assume certificates are not

being used in the protocol. Then the HD must check that

the public key of Di is not invalid before releasing s.

To do this it must ensure that a sufficient number of

elements in the public key matrix are not zero. With a

sufficient number of non-zero entries the E-Multiplication

process will ensure a sufficient mixing in the resulting

computations, eliminating the possibility of using linear

algebra to obtain information about the private key of the

HD.

In both cases the use of single-use ephemeral keys

prevent an attack. If an attacker works against an HD

(or a Di) which uses a single-use ephemeral key, then

multiple invalid-key attacks would always return unique

responses.

Length Attacks and Simultaneous Conjugacy Search At-

tacks

Although AEKAP has withstood length attacks and si-

multaneous conjugacy search attacks (see [12]) of the type

presented in [8], [9], [13], [18], these attacks completely

fail for Ironwood. This is because it is assumed that

the two sets of conjugates, Sα,Sγ , are not known to an

adversary. These two sets of conjugates are not in memory

on any of the devices Di, and only one of the sets Sα

is in memory on the HD. An assumption of Ironwood is

that an adversary cannot obtain secret information stored

on the HD.

A Class of Weak Keys

It is crucial that Ci does not commute with M ′M−1.

Otherwise an adversary can compute

s′ = (C ′M ′) · (CM)−1 · s.

Similarly, it is also crucial that Mi does not commute with

(C ′M ′) · (CM)−1. Otherwise an attacker can compute

s′ = (CiMi) · (C ′M ′)−1 · (CM) · (CiMi)
−1 · s.

The probability that one of the above commuting occurs

is very small. An upper bound for the probability that

two matrices commute in GL(N,Fq) can be determined

as follows. It is well known that there are

N−1
∏

k=0

(qN − qk)

elements in GL(N,Fq), denoted #(GL(N,Fq). On tak-

ing logarithms, summing over k, and exponentiating back,

it may be shown that

#(GL(N,Fq) ≥ qN(N−1)− N
q log q

for N, q ≥ 8. For two matrices X,Y ∈ GL(N,Fq) to

commute, X must be in the centralizer of Y , and for a

generic matrix X , its centralizer consists of polynomials

in X . The number of such polynomials is at most qN . So

an upper bound for the probability that two matrices in

GL(N,Fq) commute is given by

qN

qN(N−1)− N
q log q

.

For example, when N = 16 and q = 256 the upper bound

for the probability is 3.815× 10−540.

Quantum Resistance of Ironwood

The Ironwood MKAAP and underlying E-

Multiplication are resistant to known quantum attacks.

The following sections provide an overview and analysis.

Resistance to Shor’s Quantum Algorithm

Shor’s quantum algorithm [20] enables a sufficiently large

quantum computer to factor numbers or compute discrete

logs in polynomial time, effectively breaking RSA, ECC,

and DH. It relies on the existence of a fast quantum

algorithm to solve the Hidden Subgroup Problem (HSP)

when the hidden subgroup is a finite cyclic group. It is

known that HSP can be solved on a quantum computer

when the hidden subgroup is abelian [22].

Ironwood, but more specifically E-Multiplication, are

constructions based on the infinite non-abelian braid

group. In fact, the braid group is torsion free and, hence,

has no finite subgroups. As a result, there seems to be no

way to apply Shor’s algorithm to attack Ironwood.

Resistance to Grover’s Quantum Search Algorithm

Grover’s quantum search algorithm [21] allows a Quan-

tum computer to search for a particular element in an

unordered n-element set in a constant times
√
n steps as

opposed to a constant times n steps required on a classical

computer. Resistance to Grover’s search algorithm re-

quires increasing the search space. Since E-Multiplication

scales linearly, this means that if an attacker has access

to a quantum computer running Grover’s algorithm, it is

only necessary to double the running time of Ironwood to

maintain the same security level that currently exists for

attacks by classical computers. In comparison, the running

time of ECC would have to increase by a factor of 4 since

ECC is a based on a quadratic algorithm.

Brute Force Attacks on the Ironwood Key Agreement

Protocol

We now discuss the security level of the individual

secret components in the Ironwood protocol. For accuracy

we give the following definition of security level.
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Definition VI-A: (Security Level): A secret is said to

have security level 2k over a finite field F if the best

known attack for obtaining the secret involves running

an algorithm that requires at least 2k elementary oper-

ations (addition, subtraction, multiplication, division) in

the finite field F .

We assume that Ironwood is running on the braid group

BN over the finite field Fq . Note that there are qN

polynomials of degree N − 1 over Fq . So a brute force

search for a particular polynomial of degree N − 1 over

Fq has security level qN .

• The brute force security level of the matrix Ci is qN .

• The brute force security levels of the matrices C,C ′

are qN .

The T -values is a set of field elements {τ1, τ2, . . . , τN}
where none of the τi = 0 or 1.

• The brute force security level of the T -values is (q−
2)N .

Note that the size of the public keys Pubi of the devices

Di is N2 · log2(q)+N log2(N) and the size of the public

key of the HD is (N2 +N) · log2(q). We can thus assert

• The brute force security level of the exchanged key

is 2N log2(q) = qN .

The ephemeral private braids β, β′ of the HD are

conjugates in the BN . The number of all braid words

of length L which are conjugates is ≥ (L/2)N−1.

• The brute force security level of the private braids

β, β′ is ≥ (L/2)N−1.

It follows that the brute force security level of the

Ironwood key agreement protocol is at least

min
(

(q − 2)N , (L/2)N−1
)

.

If we choose L ≥ 2(q − 2)1−
1
N then the brute force

security level of of the Ironwood key exchange protocol

is at least (q − 2)N .

VII. IMPLEMENTATION EXPERIENCE

For testing purposes Ironwood was implemented on

multiple platforms. Because the Other Devices only need

to perform a single matrix multiplication and a single

vector multiplication, we focused our effort on the re-

quirements of the Home Device, as those operations

are more consuming and therefore more interesting to

explore.

Operationally the Home Device needs to perform two

sets of E-Multiplication operations (one with β and an-

other with β′), which take the majority of the execution

time. A single E-Multiplication operation in BN requires

N multiplies and 2N additions over the finite field Fq.

These operations, in turn, gets multiplied by the number

of Artin generators in each braid.

We generated key material using B16F256 for a pro-

posed 2128 security level. We generated 32 conjugates for

each set and from there generated key material for testing.

For this testing we generated 10 sets of Home Device keys

which averaged a braid length of 2659.2 Artin Generators

for β and 4302.4 for β′.

The first platform tested was a Texas Instruments (TI)

MSP430 16-bit (model) microcontroller. This platform

runs at various speeds from 8Mhz to 30Mhz (or faster).

On this platform we used the IAR (2011) compiler,

version 5.40.1 with Optimizations set to High and all

transformations and unrolling options checked. With this

setting the Ironwood Home Device implementation built

into 3126 bytes of ROM and ran with 354 bytes of RAM.

Running over the 10 keys, the MSP430 required anywhere

from 4,532,480 to 6,002,668 cycles with an average of

5,309,182. At 25MHz this equates to an average runtime

of 212ms.

The second platform was an NXP LPC1768 running

at 48MHz, which contains an embedded ARM Cortex

M3. We compiled our code using GCC (arm-none-eabi-

gcc) version 4.9.3 using optimization level -O3. This built

down into 2578 bytes of ROM and the runtime required

1192 bytes of RAM. Running the Ironwood shared secret

calculation over the 10 keys, this ARM platform required

anywhere from 1,538,472 to 2,026,216 cycles to compute

a shared secret, resulting in a runtime of 32.1 to 42.2ms

(averaging 37.4ms).

TABLE I
PERFORMANCE ON MSP430, LPC1768 (IN CYCLES)

Artin Length MSP430 LPC1768

|β| |β′|
2626 5272 6002668 2026216
2332 3580 4532480 1538472
2414 3944 4862464 1648742
3172 4266 5661952 1914009
2168 4514 5101824 1728545
3092 4698 5922048 2000312
2978 3968 5297664 1792959
2744 4420 5459456 1845502
2430 4762 5479424 1854446
2636 3600 4771840 1617670

2659.2 4302.4 5309182 1796687

The third platform was a TI CC2650, an embedded

ARM Cortex M3 running at 48MHz on TI-RTOS. On

this platform we used TI’s arm compiler (listed as TI

v5.2.0). It was configured at optimization level 4 (Whole

Program optimizations) with a size-speed tradeoff (SST)

of 5 (ranging from 0 to 5, 0 being fully size optimized, 5

being fully speed optimized). At this level the code used
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3568 bytes of ROM and 1192 bytes of RAM. With this

setting Ironwood computed a shared secret in an average

of 37.4ms.

We also performed tests using the size-speed tradeoff

of 2, which resulted in a smaller code size of only 1954

bytes of ROM and resulted in a very minor speed penalty,

reducing the average computation time to 37.6ms. Note

that on this platform we couldn’t get a cycle count,

only a timer, and the timer API only has a 216 cycle

resolution timer, which means the timer increments every

216/486 = 1.37ms. This implies the timer results are +/-

0.7ms. However the times are still on par with the timing

on the LPC1768.

TABLE II
PERFORMANCE ON MSP430, LPC1768, CC2650 (IN MS)

Artin Length MSP430 LPC1768 CC2650 48Mhz

|β| |β′| 25MHz 48MHz (SST 5) (SST 2)

2626 5272 240.1 42.2 42 42
2332 3580 181.3 32.2 32 32
2414 3944 194.5 34.3 34 35
3172 4266 226.5 39.9 40 40
2168 4514 204.1 36.0 36 36
3092 4698 236.9 41.2 42 42
2978 3968 211.9 37.4 37 37
2744 4420 218.4 38.4 38 39
2430 4762 219.2 38.6 39 39
2636 3600 190.9 33.7 34 34

2659.2 4302.4 212.4 37.4 37.4 37.6

VIII. CONCLUSION

In this paper we have introduced a new concept called

a Meta Key Agreement and Authentication Protocol and

defined an instance of this protocol called the Ironwood

MKAAP. We show how it resists all known attacks

against earlier key agreement constructions based on E-

Multiplication and how it is also quantum resistant against

Shor and Grover.

Implementations of Ironwood have been built and

tested on multiple platforms, and we have shown the

performance numbers achieved on three different plat-

forms leveraging two different architectures. Specifically,

we show that we can achieve a key agreement on an

MSP430 in 212ms and 37ms on an ARM Cortex M3.
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