
The Walnut Digital Signature AlgorithmTM Specification

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul Gunnells

SecureRF Corporation
100 Beard Sawmill Rd #350, Shelton, CT 06484

ianshel@securerf.com, datkins@securerf.com, dgoldfeld@securerf.com, pgunnells@securerf.com

Abstract. This document specifies the Walnut Digital Signature Algorithm (WalnutDSA), a submission
to the NIST Post-Quantum Cryptography standardization process. WalnutDSA is a group-theoretic sig-
nature system based on non-abelian group theory combined with matrices, permutations, and arithmetic
over finite fields. The computation imbalance has signature verification significantly more efficient than
signature generation, allowing fast verification even on constrained 16- and 8-bit processors. Key and
signature sizes are comparable to efficient non-quantum-resistant methods, and are much smaller than
most other quantum-resistant methods.

Table of Contents

1 Introduction . 2
2 Definitions . 2
3 Design Rationale . 3
4 Key Generation . 4
5 Signature Generation . 5

5.1 Message Encoding . 5
5.2 Cloaking Elements . 6
5.3 Concealed Cloaking Elements . 7
5.4 Rewriting . 7

5.4.1 BKL Normal Form . 7
5.4.2 Stochastic Rewriting . 7
5.4.3 Dehornoy Reduction . 9

6 Signature Verification . 10
7 E-Multiplication . 10
8 Permutations . 11

8.1 Multiplying Permutations . 11
9 Braids . 12

9.1 Pure Braids . 12
10 Object Encodings . 13

10.1 Public Key . 13
10.2 Signature . 14

11 Parameter Specifications . 14
11.1 Security Level: 128 . 14
11.2 Security Level: 256 . 15
11.3 Security Level: 20 – For Testing Purposes . 15

A Stochastic Rewriting “Y” Generator Relations . 16
A.1 Relations in B10 . 17
A.2 Relations in B8 . 20

B Expected Computational Efficiency and Performance . 22
B.1 Key-Pair Generation . 22
B.2 Raw Signature Generation . 22
B.3 Signature Rewriting . 23
B.4 Signature Validation . 25

C Expected Security Strength . 26
D Advantages and Limitations . 27
E Known Attacks . 28

1 Introduction

The Walnut Digital Signature Algorithm (WalnutDSA) was introduced in 2016 [1] based on
research for a lightweight signature method useful for constrained and embedded devices. The
foundation of WalnutDSA is E-Multiplication, a one-way function published in 2005, which
combines infinite group theory in a non-abelian group, matrices, permutation, lookups, and
finite field arithmetic. Specifically, the group used by WalnutDSA is the Braid group. See [1]
for a full security evaluation and additional references, including a proof of security under
EUF-CMA.

In WalnutDSA a private key and a signature are braids, and a public key is a pair of
matrices and permutations, and an ordered list of entries in the finite field called T-values. To
generate a signature one takes the message to be signed, hashes it, converts the hash output
to a braid, and then builds the signature. To verify a signature one performs the same hashing
and braid-converstion of the message, then two sets of E-Multiplication operations, one matrix
multiplication, and then compares the results.

E-Multiplication is extremely lightweight, easily implemented, and runs very efficiently
even in small environments. This makes signature validation very efficient even on small, 16-
and 8-bit processors. In lightweight hardware an E-Multiplication can occur in a single clock
cycle.

This document specifies how to implement WalnutDSA including key generation, signature
generation, and signature validation. It also includes the necessary statements to meet the
requirements of the NIST Post-Quantum Standardization Process section 2.B, modulo the
attached references (e.g., [1]).

2 Definitions

– BN : The braid group on N strands.
– Braid: A configuration of N woven strands. The braid group is denoted BN .
– Braid Generators: The braid group BN hasN−1 Artin generators labeled b1, b2, . . . , bN−1

which, along with their inverses (b−1i) can be used to define any braid.
– CB Matrix: A colored Burau matrix. c.f. [12].
– Cloaking Element: A braid of a special form that disappears during E-Multiplication.

A cloaking element v is said to cloak for a permutation σ when (m,σ) ? v = (m,σ).

2

– Concealed Cloaking Element: A cloaking element where the cloaked permutation is
unknown.

– E-Multiplication: An action on a matrix, permutation, and braid resulting in a new
matrix and permutation. The action is denoted by the symbol ?.

– FFFq: A finite field with q elements. In the case of a binary field, the polynomial elements of
the field are translated directly into the binary integer representation.

– Matrix: An N×N grouping of elements. Herein these elements are computed over a finite
field Fq.

– Permutation: A one-to-one function from a set onto itself.
– Purebraid: A non-trivial braid whose corresponding permutation is trivial.
– R: A braid rewriting function that maps a braid to another equivalent braid, used to

obfuscate the structure.
– σw: A permutation of the braid word w.
– T-values: An array of N nonzero elements {τ1, τ2, . . . , τN} in the finite field Fq.

3 Design Rationale

During the construction of WalnutDSA we encountered several decision points. The following
are potential questions about WalnutDSA that may arise and the answers as to why the
choices were made. Note that understanding these issues may require reading to the end and
then returning to this section.
• Why are cloaking elements needed?
Cloaking elements exist to prevent WalnutDSA from being susceptible to the Conjugacy

Search Problem.
The general goal was to produce a group element, using the signer’s private key and the

message, so that extracting the signer’s private key would be algorithmically hard. The second
goal was to use E-Multiplication for the verification step. The third goal was that the public
key of the signer and some other readily available data facilitates one side of the verification.
In order to bring the message into the signature, a hash function is applied and then a method
for encoding the hash output into the braid group is performed. Since simply conjugating the
encoded message by the signer’s private key would not be sufficient to keep the private key
secure, additional braids are inserted into the conjugate to obscure the private key. In order to
facilitate (efficient) verification, these additional braids must not be too long and must satisfy
the cloaking property.
• Why do we set τ2 = −τ−11 ?
In order to produce cloaking elements which are reasonably short, we need to set constraints

on T-values. Specifically, if τ1 ·τ2 = −1 then by taking b±4i we end up with a short element that
disappears. By evaluating the precise form the CB pair associated with the fourth power of
Artin generators take (and conjugating appropriately) we see that the assumption τ2 = −τ−11

ensures that the conjugate of the fourth power will disappear when E-Multiplied as needed.
• Why are hashed messages encoded into a free subgroup of the pure braid subgroup?
We need to ensure that two distinct hashes of messages encode in distinct ways, i.e., yield

different braids. We do this by associating with each possible block of bits in a hash value with
a positive power of a braid which is a generator of a free subgroup of the braid group. Such
expressions are necessarily distinct.

3

• Why are N ≥ 8 and q ≥ 32?
We need to ensure that a brute force attack on the method is ineffective. By choosing

N ≥ 8 and q ≥ 32, we ensure there are sufficiently many public keys, and that the underlying
algorithmically hard problems are robust. Moreover, we need to ensure that, for a k-bit security
level, qN(N−3)−1 > 22k, given the dimension of the computed vector space from the encoded
messages, qdimension > 22k, and also qN/2−1

√
60 > 2k.

• Why recommend b−4i for cloaking elements?
When generating a cloaking element, we can choose several options for the exponent. When

q is prime we use a 4th power, and when q is GF(2) we can choose 2 or 4. In either case, however,
we can choose either a positive or negative exponent. The benefit of a negative exponent is
that, when using BKL for rewriting, the BKL First Pass will collect all negative exponents
to the begining of the braidword. This implies that a cloaking element using a -4 exponent
will, under BKL, mix more than a +4 exponent. We do not suggest always using a negative
exponent because this mixing is only ensured under BKL.

4 Key Generation

First generate the private key:

1. Choose an integer N ≥ 8 and associated braid group BN .
2. Choose a finite field Fq of q ≥ 32 elements.
3. Compute the values κ = 6κ1 + 2κ2 from the security level, which determines the minimal

number of concealed cloaking elements to include:

κ = dSecurityLevel/ log2(N !)e

4. Compute the value ` from the security level, which determines the minimal length of the
private key. To compute ` you need to solve the equation:

` = Security Level + log2(`)− log2(N − 1)− log2(

(
`− 2 +N

N − 1

)
)

Note that these four items are pre-defined by the security level parameters in Section 11
so in general nothing must be done to “choose” N , q, κ1, κ2, or `.

5. Choose a random set of T-values = {τ1, τ2, . . . , τN}, where each τi is an invertible element
in Fq (τi 6= 0, 1), and then set τ2 = −τ−11 ensuring τ2 6= 1. If τ2 = 1 then randomly choose
a new τ1 and recompute. Repeat until τ2 6= 1.

6. Generate a random braid of length ` (see section 9). This braid must not be a purebraid,
so regenerate if the permutation is trivial.

7. Freely reduce this braid (see section 5.1).
8. Generate a second random braid of length ` and freely reduce it. This braid must not be a

purebraid, and must not have the same permutation as the first braid, so regenerate if the
permutation is trivial or matches the permutation of the first braid.

9. Priv(S) is the first freely reduced braid, which has permutation σPrivS, and Priv(S’) is the
second freely reduced braid, which has permutation σPrivS′ .

4

Next, compute the public key by E-Multiplication (?):

1. Pub(S) =
(
IdN , IdSN

)
? Priv(S), where IdN is the N ×N identity matrix and Id

SN
is the

identity permutation in SN . See section 7 for more information on E-Multiplication.
2. Pub(S’) =

(
IdN , IdSN

)
? Priv(S’)

3. Publish the public key with the following data:
– N
– q
– T-values
– Pub(S)
– Matrix Part of Pub(S’)

5 Signature Generation

The WalnutDSA method requires the full message to be hashed before being passed into the
signature function. An appropriate hash method should be used and the output passed to the
signature generator as the messageM. Suggested hash functions are denoted in the appropri-
ate parameter selections (see Section 11).

To generate a signature:

1. Generate the encoded message E(M) as per section 5.1.
2. Generate cloaking elements v1, v2, v3 as defined in section 5.2 with κ1 concealed cloaking

elements (see section 5.3) on each side, where v1 cloaks for the identity, v2 cloaks for σPrivS′ ,
and v3 cloaks for σPrivS.

3. Add κ2 concealed cloaking elements to Priv(S)−1 and Priv(S’) – labeled κ(S) and κ(S ′).
Note that σ0 for κ(S) is σPrivS, and that σ0 for κ(S ′) is the identity permutation. See
section 5.3.

4. Compute the signature Sig = R
(
v3 · κ(S) · v1 ·E(M) · κ(S ′) · v2

)
, a braid rewritten as per

5.4.

5.1 Message Encoding

The original input gets hashed and the output of the hash is the input to the WalnutDSA
Message Encoder. We assume the length of the hash outputM is 2d, a multiple of 2 bits long.

The encoding method utilizes the collection of pure braid generators given by the following
equations [2]:

x1 = g(N−1),N = b2N−1
x2 = g(N−2),N = bN−1 · b2N−2 · b−1N−1
x3 = g(N−3),N = bN−1bN−2 · b2N−3 · b−1N−2b

−1
N−1

x4 = g(N−4),N = bN−1bN−2bN−3 · b2N−4 · b−1N−3b
−1
N−2b

−1
N−1

...
xN−1 = g1,N = bN−1bN−2 · · · b2 · b21 · b−12 b−13 · · · b−1N−1

5

Next we specify a sequence of 4-tuples of generators, S, where each entry in the se-
quence, Si = {gi1 , gi2 , gi3 , gi4} identifies unique generators, and where g1 = xN−1, g2 = xN−2,
. . . gN−1 = x1. This specification only specifies the ix values, e.g. Si = {1, 3, 5, 7} implies
{g1, g3, g5, g7} = {xN−1, xN−3, xN−5, xN−7}. The sequence S repeats once the end is reached.

The message encoder proceeds as follows:

1. Assume there are |S| members in the encoding sequence S.
2. Break the messageM into d 2-bit blocks.
3. For each block (the ith block):
(a) Choose the ith entry in the sequence S, Si. Because S repeats, if i > |S| then choose

the entry i mod |S|.
(b) Use the two bits of the block (x) to choose the generator gix in the sequence entry Si.
(c) Append gix to the result.
For example, if S = {{1, 3, 5, 7}, {2, 4, 6, 8}} and the hex hash output is 0x1234, this results
in the output g1 g4 g1 g6 g1 g8 g3 g2

4. The encoded message E(M) is the freely reduced product of these d block results.

Free reduction is a rewriting process that removes certain pairs of elements in the braid
– namely, a generator bi followed immediately by its inverse b−1i , or an inverse generator b−1i
followed by the generator bi. Any such pair of consecutive elements may be erased from the
braid. For example, the free reduction of the braid b1b2b−12 b3 is b1b3.

5.2 Cloaking Elements

A cloaking element is a braid of a special form that disappears during E-Multiplication (see
section 7). A cloaking element v is said to cloak for a permutation σ when (m,σ) ? v = (m,σ).

To generate a cloaking element that cloaks permutation σ with κ concealed cloaking ele-
ments:

1. Pick a random integer 2 ≤ i ≤ N − 1.
2. Pick a random bit, ±1, for the cloaking element exponent.1

3. Compute the permutation preimages (a, b) for 1 and 2 in σ, i.e., a is the value σ takes to
1, and b is the value σ takes to 2: a = σ−1(1), b = σ−1(2).

4. Choose a random permutation σw of high order that moves i → a, i + 1 → b (see section
8).

5. Generate a random braid using permutation σw (see section 9) and invert it (so the result
has permutation σw), calling the result w.

6. Add κ concealed cloaking elements (see section 5.3) to each of w and w−1 where κ is the
specific parameter for this cloaking element. The σ0 for the concealed cloaking elements
are this cloaking element’s permutation parameter, σ, for inserting into w and σ · σw for
inserting into w−1. Call these results κ(w) and κ(w−1).

7. Compute the cloaking element v = κ(w) · b±4i · κ(w−1).
1 When using a rewriting method like BKL, having a cloaking element to a negative power will result in better
obscuration

6

5.3 Concealed Cloaking Elements

A concealed cloaking element is a cloaking element where the permutation being cloaked in
unknown a priori.

To insert κ concealed cloaking elements in the braidword bw with initial permutation σ0:

1. If κ = 0 then return bw.
2. Pick a random offset in the braidword bw: 0 < offset < length(bw)− 12

3. Split bw into two subwords bwl and bwr, where there are offset Artin generators in bwl.
4. Determine the permutation of bwl: σbwl

5. Generate a cloaking element (see section 5.2) CE for the permutation σ0 · σbwl
(see section

8.1) with κ = 0
6. Create a new braidword: bwnew = bwl · CE · bwr
7. Repeat this process starting from step 1 with bw = bwnew and κ = κ− 1

5.4 Rewriting

The signature braid must be rewritten to hide the form and protect the private key. There
are an infinite number of equivalent braids which means it is computationally infeasible to
determine the original from of the rewritten version. We specify two methods to rewrite the
signature (BKL Normal Form and Stochastic Rewriting), plus a third option that may be used
to reduce the final length (Dehornoy Reduction).

5.4.1 BKL Normal Form

Birman–Ko–Lee (BKL) Normal Form was introduced in 1998 [3] as a canonical form for a
braid. Every braid can be converted to BKL Normal Form, and every equivalent braid will
result in the same BKL output. For example, the braids b1 b2 b1 and b2 b1 b2 would result in
the same output after running through BKL.

Please reference Section 4 of [3] for the algorithm description.

5.4.2 Stochastic Rewriting

Stochastic Rewriting is a new method which is useful for smaller processors because it just
involves random rewriting from lookup tables. The process is:

1. Freely reduce the braid if it has not already been reduced.
2. Convert the braid to “Y generators” and freely reduce the result.
3. Partition the braid into chunks of random sizes between 5-10 generators each3:
(a) Generate random numbers between the minimum (5) and the maximum (10) inclusive,

and subtract each from the initial total until the running drops below the minimum.
(b) If the running total is zero then the partition has been found.

2 We want to ensure there is always at least one generator to the left and one generator to the right of the concealed
cloaking element.

3 Note that there are 2W−1 possible partitions of a word of length W if partitions could be of any size. Limiting to
blocks of size 5-10 reduces that number. Still, reversing the process is hard.

7

(c) Otherwise (running total is not zero), jump back to the position in the list where the
running total was greater than minimum * maximum (50) and set the running total to
this value.

(d) Repeat until the running total becomes zero.
4. For each partition, choose a random offset into the partition (from the first to second-last).
5. Take the offset and offset+1 generators and look up a relation in the relation table (see

Appendix A).
6. Replace those two generators with the relation (if one is found) using the Pair Replacement

method described below; otherwise, do nothing for this partition.
7. Once you reach the last partition, freely reduce and then return to step 3 in order to repeat

the process 3 times.
8. After the third repetition, convert back to Artin generators and freely reduce.

Convert Artin to Y Generators
Use the following process to convert a single Artin generator bk ∈ BN to Y generators

using the partition p of N − 1. If the Artin generator is an inverse, then invert the Y result.
Converting a full word just involves iteration of this method. Note that the partition here is
a static partition of N − 1.

// Create an array the same length as the number of partitions of N-1
r := array[length_of(p)+1]

// Initialize this array with the sum of the partitions
r[1] = 1
for i in (2..length_of(p)+1):

r[i] = r[i-1] + p[i-1]

// Determine which partition contains k
j = 1
while(r[j] <= k):

j++
j--;

// Build the response
u = k - r[j]
if (u < p[j] - 1):

answer = {{r[j]+u, 1}, {r[j]+u+1, -1}}
else:

answer = {{r[j]+u, 1}}

return answer

Convert Y to Artin Generators
Use the following process to convert a single Y generator yk ∈ BN to Artin generators

using the partition p of N − 1. If the Y generator is an inverse, then invert the Artin result.
Converting a full word just involves iteration of this method. Note that the partition here is
a static partition of N − 1.

8

// Create an array the same length as the number of partitions of N-1
r := array[length_of(p)+1]

// Initialize this array with the sum of the partitions
r[1] = 1
for i in (2..length_of(p)+1):

r[i] = r[i-1] + p[i-1]

// Determine which partition contains k
j = 1
while(r[j] <= k):

j++
j--;

// Build the response
u = k - r[j]
answer = {}
for i in (0..p[j]-u-1):

answer = answer + {r[j]+u+i, 1}

return answer

Integer Partitions
A partition of an integer is an ordered list of integers that sum to the desired total. For

example, the integer 20 can be partitioned into {10,10}, or {5,5,5,5}, or {7,8,5}, or {7,5,8}, or
any other random split.

Pair Replacement
The partitioning of N − 1 not only defines the Artin to Y generator mappings but also the

set of relations between pairs of generators. This list of relations is enumerated in Appendix
A. Given a Y-word of length two, the process searches through the list of relations until a
match is found (i.e, it finds a relation that contains the length-two word). Note that not all
pairs of generators have relations, so there may not be a match.

Once a relation is found, the replacement is made by replacing the original pair with the
inverse of the surrounding relation by inverting the part of the relation to the left of the
subword, and then the part to the right of the subword. For example, if one is searching for
the subword {1,1}{2,1} and the relation that was found is {3,1}{2,1}{1,1}{2,1}{3,1}. The left
part is {3,1}{2,1} and the right part is {3,1}. Once you invert and concatenate these parts,
then the replacement would be {2,-1}{3,-1}{3,-1}.

Note that if there are multiple matches for the pair within the relation then randomly
choose one of the matches.

5.4.3 Dehornoy Reduction

9

Dehornoy Reduction is a method to reduce the size of a braid by finding and removing complex
cancelations beyond single free reduction [8]. While solving the shortest word problem in the
braid group is known to be NP-Hard, Dehornoy is the best-known method to reduce a braid
to a minimal length. Applying Dehornoy is recommended; however, it may be applied “later”.
For example, a lightweight processor may generate a signature and use Stochastic Rewriting,
and then send that (long) signature to another, more powerful device, which can then run
Dehornoy.

Please reference Section 4 of [8] for the algorithm description.

6 Signature Verification

Signature verification depends on first hashing the input using the same hash method as the
signature generation to generate the hash outputM. Then to verify the signature:

1. Any signature longer than 214 generators is immediately considered invalid.
2. Compute E(M) as per section 5.1.
3. Evaluate (M1, σ1) = (IdN , IdSN

)?E(M), where IdN is the N ×N identity matrix and Id
SN

is the identity permutation in SN .
4. Evaluate (M2, σ2) = Pub(S) ? Sig.
5. Compute the matrix multiplication M3 = M1· MatrixPart(Pub(S’)).
6. Compare M2 and M3 for equality. If M2 = M3, then the signature is valid.

7 E-Multiplication

The one-way function E-Multiplication is an action that starts with a matrix and permutation,
a braid, and results in a new matrix and permutation. E-Multiplication is iterative, and by
definition is applied one braid generator at a time. One can find closed formula for applying
certain longer braid words.

The best way to explain the process is via pseudo-code. To compute a singleE-Multiplication
starting with a matrix m, permutation p, and braid generator bei :

// compute the multiplication values for this generator based
// on the T-values, strand, and whether the generator is inverted
if e == 1:

a = T[p[i]]
b = -a
c = 1

else: // e == -1
a = 1
b = -Inverse(T[p[i+1]])
c = -b

// iterate down columns and matrix-multiply each value
if i != 0:

for j in (1..N):

10

m[j][i-1] += m[j][i] * a

for j in (1..N):
m[j][i+1] += m[j][i] * c

for j in (1..N):
m[j][i] *= b

// swap permutation based on the generator
temp = p[i]
p[i] = p[i+1]
p[i+1] = temp

To compute the E-Multiplication of a longer braid, one just iterates this process over the
whole braid, reading from left to right.

8 Permutations

To generate a random permutation use the Fisher-Yates Shuffle [9]:

1. Start with the identity permutation of n elements.
2. Start with the last (1-indexed) offset, i = n.
3. Choose a random number 1 ≤ j ≤ i.
4. Swap permutation elements i and j.
5. Iterate i down to 1.

If the desired permutation has additional constraints, those constraints can be applied after
this process is complete. For example, if one needs to move i→ a, then one takes a randomly
constructed permutation and modifies it by the following:

1. Find the permutation preimage of a. This is the offset o where the permutation value is a.
2. Swap the entries at o and i.

Note that all offsets and values are 1-indexed in this definition.

8.1 Multiplying Permutations

Parts of the WalnutDSA method require multiplying permutations. To multiply two permu-
tations, σX and σY , to generate σX · σY , use the following process:

1. Iterate i from 1 . . . N

2. Look up the ith entry in σY (call it j)
3. Assign the ith entry in the result with the jth entry in σX
4. The result is the multiplication σX · σY

11

9 Braids

To generate a random braid word of length l:

1. Choose a random braid generator bi, where 1 ≤ i < N .
2. Choose a random power, ε = {−1, 1}.
3. Append bεi to the braid word.
4. Iterate l times.
5. Freely reduce the result.

To generate a random braid b(σ) from permutation σ:

1. Convert the permutation σ to a product of transpositions t1 · · · tr:
(a) First write σ as a product of disjoint cycles C1 · · ·Cs where the last element of each Ci

is the smallest number in the cycle.
(b) Order the cycles such that the last element of each Ci is in ascending order.
(c) Convert each cycle to a product of transpositions: if Ci = (a1, . . . , ak), then Ci =

(a1, a2)(a1, a3) · · · (a1, ak).
(d) Replace each Ci with its corresponding product of transpositions and flatten the list.

2. For each transposition ti, generate a random braid b(ti) that produces it:
(a) Find the smallest element m and largest element M exchanged by the transposition t,

i.e., t = (m,M).
(b) Set b(ti) to be the identity braid.
(c) For k = m to M − 1, replace b(ti) with b(ti) · bεk, where ε = {−1, 1} is randomly chosen.
(d) For k = 2 toM−m, replace b(ti) with b(ti) ·bεM−k, where again ε = {−1, 1} is randomly

chosen.
3. The result4 b(σ) is the product b(t1) · · · b(tr).

9.1 Pure Braids

The pure braid subgroup of BN is generated [10] by the set of (N)(N − 1)/2 braids given by:

gi,j = bj−1bj−2 · · · bi+1 · b2i · b−1i+1 · · · b−1j−2b−1j−1, 1 ≤ i < j ≤ N.

To create a pure braid generator of BN :

1. Choose random numbers i, j: 1 ≤ i < j ≤ N .
2. Choose a random exponent ε = {−1, 1}.
3. Iterate 0 ≤ k < j − i− 1 and append bj−k−1.
4. Append b2εi .
5. Iterate 0 ≤ k < j − i− 1 and append b−1i+k+1.
4 Note that this process generates a braid that has permutation σ−1 which is why it is inverted in Section 5.2.

12

10 Object Encodings

Throughout this document, indices are often 1-indexed. For example, in BN the generators
are labeled b1, b2, However, computers are better with 0-indexed numbers, arrays, and
matrices, so the encodings are 0-indexed.

For all encodings, multi-byte numbers are encoded in network byte order (i.e., most signif-
icant byte first). For example, the decimal number 255 is encoded in hex as 00 FF, decimal
256 as 01 00.

Larger data objects like matrices, permutations, and braids are “bit packed” to reduce the
effective transmission size. Bit packing also uses most-significant-bit first. When packing a
matrix, the entries are encoded from 0 to q − 1 and packed across each row sequentially. The
permutation is packed as a series of entries from 0 to N − 1.

Braids get encoded first with a 2-byte length (which is the number of generators)5, and
then each generator is encoded with one bit for the sign and additional bits for the strand.
For example, in B8 packing each braid generator requires 4 bits. In B8, encoding the braid
b1 b

−1
2 b3 b4 b

−1
5 b6 b

−1
7 would result in the hex 00 07 09 23 C5 E0.

10.1 Public Key

The public key contains the following data:

– N: an 8-bit unsigned integer.
– q: a 16-bit field (see below).
– Header Padding: Parameter-specific extra header padding. If specified by the parameter

definition, this will be the specified number of bytes zero-byte padding.
– T-values: a packed array of N entries in Fq. This results in N log2(q) bits, which gets

rounded up to the nearest byte (padded with 0-7 bits of zeros) as necessary. The parameter
specifies the packing rules.

– Pub(S) Matrix: a possibly-packed matrix of N × (N − 1) + 1 entries in Fq. We know the
last row of the matrix is always 0, except for the last entry of the last row, so those N − 1
entries are elided from the packing. This results in (N2 − N + 1) log2(q) bits which gets
rounded up to the nearest byte (padded with 0-7 bits of zeros) as necessary. The parameter
specifies the packing rules.

– Pub(S’) Matrix: a possibly-packed matrix of N × (N − 1) + 1 entries in Fq. We know the
last row of the matrix is always 0, except for the last entry of the last row, so those N − 1
entries are elided from the packing. This results in (N2 − N + 1) log2(q) bits which gets
rounded up to the nearest byte (padded with 0-7 bits of zeros) as necessary. The parameter
specifies the packing rules.

– Pub(S) Permutation: a packed array of N entries from 0 to N − 1. This results in
N log2(N) bits, which gets rounded up to the nearest byte (padded with 0-7 bits of zeros).

The q field is a 16-bit field that encodes the field parameter. It a “big-endian” bit-string
that has the following format, a 2-bit flag and a 14-bit big-endian value:

Bits: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Value: Flag Value

5 In all testing to date, signature braids have never exceeded 10,000 generators.

13

Where the Flag defines the Value as:
0 0 Direct Field Number
0 1 Mersenne Prime: 2V alue − 1
1 0 Reserved
1 1 Reserved

10.2 Signature

A signature is just a braid, so it is encoded as a single packed braid as detailed at the start
of this section. It has a 2-byte (16-bit) integer length (the number of generators) followed
by the packed list of generators. Because each generator encodes into 4 bits, you can fit two
generators into every byte. If you have an odd number of generators then the final byte is
padded with zeros.

It does not matter which reduction method is used; in all cases the signature is converted
to and encoded in Artin generators. Moreover, the 2-byte length field is sufficient because in
all cases the maximum length seen experimentally is well below 65,000 generators. A long
signature could be the result of an attempted attack and must be considered invalid.

11 Parameter Specifications

11.1 Security Level: 128

For a classical security level of 2128 (which, subject to Grover, results in a quantum-safe security
level of 264), use the following parameters:

– N = 10
– q = 231 − 1 (aka M31)
– κ1 = 1
– κ2 = 0
– ` = 124
– Hash function: SHA2-256
– Encoder Sequence: {3,5,7,9}, {2,4,6,8}, {1,3,5,7}, {2,4,6,8} (Dimension 82)
– Matrix and T-value padding is elided
– Header Padding: 1 byte

This results in a 256-bit message size, at least 2350 possible public keys that would need to
be searched, as well as at least 2128 possible secret keys and cloaking elements. The public key
is 6232 bits (including the N/q values). The private key is variable length and has a maximum
length of 1240 bits (not including any markers as to N , individual braid lengths, or the security
level).

Signatures are variable length, and the actual resulting length also depends on which rewrit-
ing method gets used. Experimentally we can determine the expected minimum, maximum,
and average lengths (see Table 1).

14

Rewriting Method Minimum Mean Maximum
BKL + Dehornoy 5790 10186.05 16530
Stochastic + Dehornoy 5540 9939.60 16310
Stochastic w/o Dehornoy 15860 19608.85 23670

Table 1: Experimentally determined 128-bit signature lengths (in bits)

11.2 Security Level: 256

For a classical security level of 2256 (which, subject to Grover, results in a quantum-safe security
level of 2128), use the following parameters:

– N = 10
– q = 261 − 1 (aka M61)
– κ1 = 2
– κ2 = 0
– ` = 275
– Hash function: SHA2-512
– Encoder Sequence: {3,5,7,9}, {2,4,6,8}, {1,3,5,7}, {2,4,6,8} (Dimension 82)
– Matrix and T-value padding is elided
– Header Padding: 5 bytes

This results in a 512-bit message size, at least 2560 possible public keys that would need to
be searched, as well as at least 2256 possible secret keys and cloaking elements. The public key
is 12408 bits (including the N/q values). The private key is variable length with a maximum of
2750 bits (not including any markers as to N , individual braid lengths, or the security level).

Signatures are variable length, and the actual resulting length also depends on which rewrit-
ing method gets used. Experimentally we can determine the expected minimum, maximum,
and average lengths (see Table 2).

Rewriting Method Minimum Mean Maximum
BKL + Dehornoy 12100 19280.80 28520
Stochastic + Dehornoy 12640 19394.25 29600
Stochastic w/o Dehornoy 31170 38468.20 42620

Table 2: Experimentally determined 256-bit signature lengths (in bits)

11.3 Security Level: 20 – For Testing Purposes

In order to test an insecure version of WalnutDSA, we suggest a smaller version at a classical
security level of 220 by using the following parameters:

– N = 8
– q = 16
– κ1 = 1

15

– κ2 = 0
– ` = 25
– Hash function: SHA1
– Encoder Sequence: {1,3,5,7} (Dimension 14)
– Matrix and T-value packing is in effect

This results in a 160-bit message size, at least 2160 possible public keys that would need to
be searched, as well as at least 240 possible secret keys and cloaking elements. The public key
is 544 bits (including the N/q values). The private key is variable length with a maximum of
200 bits (not including any markers as to N or the security level).

References
1. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P. E., WalnutDSATM: A Lightweight Quantum Resistant Digital

Signature Algorithm, https://eprint.iacr.org/2017/058.pdf.
2. Birman, J., Braids, Links and Mapping Class Groups, Annals of Mathematics Studies, Princeton University Press,

1974.
3. Birman, J; Ko, K. H.; Lee, S. J., A new approach to the word and conjugacy problems in the braid groups, Adv.

Math. 139 (1998), no. 2, 322–353, http://www.math.columbia.edu/~jb/bkl-newpres.pdf.
4. W. Beullens, WalnutDSA Official Comment, Computer Security Resource Center Post-Quantum Cryp-

tography, National Institute of Standards and Technology, 15 January 2018. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/
WalnutDSA-official-comment.pdf. pp. 2 - 4. [Accessed 9 February 2018].

5. W. Beullens, WalnutDSA Official Comment, Computer Security Resource Center Post-Quantum Cryp-
tography, National Institute of Standards and Technology, 1 Feburary 2018. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/
WalnutDSA-official-comment.pdf. pp. 19 - 21. [Accessed 9 February 2018].

6. W. Buellens, WalnutDSA Official Comment, Computer Security Resource Center Post-Quantum
Cryptography, National Institute of Standards and Technology, 4 April 2018. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/
WalnutDSA-official-comment.pdf. pp. 26 - 27. [Accessed 5 April 2018].

7. S. R. Blackburn, WalnutDSA Official Comment, Computer Security Resource Center Post-Quantum
Cryptography, National Institute of Standards and Technology, 22 January 2018. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/
WalnutDSA-official-comment.pdf. pp. 8 - 12. [Accessed 9 February 2018].

8. Dehornoy, P. A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235,
http://www.math.unicaen.fr/~dehornoy/Papers/Dfo.pdf.

9. Fisher, R.; Yates, F., Fisher–Yates Shuffle, http://en.wikipedia.org/wiki/Fisher-Yates_shuffle.
10. Hansen, V. L., Braids and coverings: selected topics, With appendices by Lars Gæde and Hugh R. Morton, London

Mathematical Society Student Texts, 18, Cambridge University Press, Cambridge, (1989).
11. M. Kotov; A. Menshov; A. Ushakov, An attack on the Walnut digital signature algorithm, Cryptology ePrint Archive:

Report 2018/393 (2018).
12. Morton, H. R., The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, (Funchal,

1998), 167–172, Contemp. Math., 233, Amer. Math. Soc., Providence, RI, 1999.

A Stochastic Rewriting “Y” Generator Relations

The following is a list of 1-indexed Y relations in B10 with partition {5,4} for use in the
Stochastic Rewriting process, followed by a list of relations in B8 with partition {4,3}. These
lists are created by enumerating all braid relations available in Artin generators (e.g., b1 b2 b1 =
b2 b1 b2, etc, and b1 b3 = b3 b1, etc) and converting them to Y generators, and also the additional
relations that are available due to the change over to Y generators. Note that not every possible
pair of yi yj is in the list. This list is then sorted by length, which results in the following lists:

16

A.1 Relations in B10

{5,1}{9,1}{5,-1}{9,-1}
{9,-1}{5,1}{9,1}{5,-1}
{9,1}{5,1}{9,-1}{5,-1}
{2,1}{1,1}{5,1}{1,-1}{1,-1}
{3,1}{1,1}{5,1}{2,-1}{1,-1}
{3,1}{2,1}{5,1}{2,-1}{2,-1}
{4,1}{2,1}{5,1}{3,-1}{2,-1}
{4,1}{3,1}{5,1}{3,-1}{3,-1}
{5,1}{3,1}{5,1}{4,-1}{3,-1}
{7,1}{6,1}{9,1}{6,-1}{6,-1}
{8,1}{6,1}{9,1}{7,-1}{6,-1}
{8,1}{7,1}{9,1}{7,-1}{7,-1}
{9,1}{7,1}{9,1}{8,-1}{7,-1}
{9,1}{8,1}{9,1}{8,-1}{8,-1}
{1,-1}{2,1}{1,1}{5,1}{1,-1}
{1,-1}{3,1}{1,1}{5,1}{2,-1}
{2,-1}{3,1}{2,1}{5,1}{2,-1}
{2,-1}{4,1}{2,1}{5,1}{3,-1}
{3,-1}{4,1}{3,1}{5,1}{3,-1}
{3,-1}{5,1}{3,1}{5,1}{4,-1}
{6,-1}{7,1}{6,1}{9,1}{6,-1}
{6,-1}{8,1}{6,1}{9,1}{7,-1}
{7,-1}{8,1}{7,1}{9,1}{7,-1}
{7,-1}{9,1}{7,1}{9,1}{8,-1}
{8,-1}{9,1}{8,1}{9,1}{8,-1}
{1,1}{1,1}{5,-1}{1,-1}{2,-1}
{1,1}{2,1}{5,-1}{1,-1}{3,-1}
{2,1}{2,1}{5,-1}{2,-1}{3,-1}
{2,1}{3,1}{5,-1}{2,-1}{4,-1}
{3,1}{3,1}{5,-1}{3,-1}{4,-1}
{3,1}{4,1}{5,-1}{3,-1}{5,-1}
{6,1}{6,1}{9,-1}{6,-1}{7,-1}
{6,1}{7,1}{9,-1}{6,-1}{8,-1}
{7,1}{7,1}{9,-1}{7,-1}{8,-1}
{7,1}{8,1}{9,-1}{7,-1}{9,-1}
{8,1}{8,1}{9,-1}{8,-1}{9,-1}
{2,-1}{1,1}{1,1}{5,-1}{1,-1}
{3,-1}{1,1}{2,1}{5,-1}{1,-1}
{3,-1}{2,1}{2,1}{5,-1}{2,-1}
{4,-1}{2,1}{3,1}{5,-1}{2,-1}
{4,-1}{3,1}{3,1}{5,-1}{3,-1}
{5,-1}{3,1}{4,1}{5,-1}{3,-1}
{7,-1}{6,1}{6,1}{9,-1}{6,-1}

17

{8,-1}{6,1}{7,1}{9,-1}{6,-1}
{8,-1}{7,1}{7,1}{9,-1}{7,-1}
{9,-1}{7,1}{8,1}{9,-1}{7,-1}
{9,-1}{8,1}{8,1}{9,-1}{8,-1}
{4,1}{4,1}{5,-1}{4,-1}{5,-1}
{8,1}{8,1}{9,-1}{8,-1}{9,-1}
{5,-1}{4,1}{4,1}{5,-1}{4,-1}
{9,-1}{8,1}{8,1}{9,-1}{8,-1}
{5,1}{4,1}{5,1}{4,-1}{4,-1}
{9,1}{8,1}{9,1}{8,-1}{8,-1}
{1,1}{2,-1}{5,1}{2,1}{1,-1}{5,-1}
{2,1}{3,-1}{5,1}{3,1}{2,-1}{5,-1}
{3,1}{4,-1}{5,1}{4,1}{3,-1}{5,-1}
{5,1}{7,1}{8,-1}{5,-1}{8,1}{7,-1}
{5,1}{8,1}{9,-1}{5,-1}{9,1}{8,-1}
{1,1}{2,-1}{9,1}{2,1}{1,-1}{9,-1}
{2,1}{3,-1}{9,1}{3,1}{2,-1}{9,-1}
{3,1}{4,-1}{9,1}{4,1}{3,-1}{9,-1}
{4,1}{5,-1}{9,1}{5,1}{4,-1}{9,-1}
{6,1}{7,-1}{9,1}{7,1}{6,-1}{9,-1}
{7,1}{8,-1}{9,1}{8,1}{7,-1}{9,-1}
{5,-1}{1,1}{2,-1}{5,1}{2,1}{1,-1}
{5,-1}{2,1}{3,-1}{5,1}{3,1}{2,-1}
{5,-1}{3,1}{4,-1}{5,1}{4,1}{3,-1}
{7,-1}{5,1}{7,1}{8,-1}{5,-1}{8,1}
{8,-1}{5,1}{8,1}{9,-1}{5,-1}{9,1}
{9,-1}{1,1}{2,-1}{9,1}{2,1}{1,-1}
{9,-1}{2,1}{3,-1}{9,1}{3,1}{2,-1}
{9,-1}{3,1}{4,-1}{9,1}{4,1}{3,-1}
{9,-1}{4,1}{5,-1}{9,1}{5,1}{4,-1}
{9,-1}{6,1}{7,-1}{9,1}{7,1}{6,-1}
{9,-1}{7,1}{8,-1}{9,1}{8,1}{7,-1}
{5,1}{1,1}{2,-1}{5,-1}{2,1}{1,-1}
{5,1}{2,1}{3,-1}{5,-1}{3,1}{2,-1}
{5,1}{3,1}{4,-1}{5,-1}{4,1}{3,-1}
{7,1}{8,-1}{5,1}{8,1}{7,-1}{5,-1}
{8,1}{9,-1}{5,1}{9,1}{8,-1}{5,-1}
{9,1}{1,1}{2,-1}{9,-1}{2,1}{1,-1}
{9,1}{2,1}{3,-1}{9,-1}{3,1}{2,-1}
{9,1}{3,1}{4,-1}{9,-1}{4,1}{3,-1}
{9,1}{4,1}{5,-1}{9,-1}{5,1}{4,-1}
{9,1}{6,1}{7,-1}{9,-1}{7,1}{6,-1}
{9,1}{7,1}{8,-1}{9,-1}{8,1}{7,-1}
{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1}{2,-1}
{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1}{3,-1}

18

{3,1}{5,-1}{3,1}{4,-1}{5,1}{3,-1}{5,1}{4,-1}
{6,1}{8,-1}{6,1}{7,-1}{8,1}{6,-1}{8,1}{7,-1}
{7,1}{9,-1}{7,1}{8,-1}{9,1}{7,-1}{9,1}{8,-1}
{2,-1}{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1}
{3,-1}{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1}
{4,-1}{3,1}{5,-1}{3,1}{4,-1}{5,1}{3,-1}{5,1}
{7,-1}{6,1}{8,-1}{6,1}{7,-1}{8,1}{6,-1}{8,1}
{8,-1}{7,1}{9,-1}{7,1}{8,-1}{9,1}{7,-1}{9,1}
{2,1}{3,-1}{1,1}{3,-1}{2,1}{1,-1}{3,1}{1,-1}
{3,1}{4,-1}{2,1}{4,-1}{3,1}{2,-1}{4,1}{2,-1}
{4,1}{5,-1}{3,1}{5,-1}{4,1}{3,-1}{5,1}{3,-1}
{7,1}{8,-1}{6,1}{8,-1}{7,1}{6,-1}{8,1}{6,-1}
{8,1}{9,-1}{7,1}{9,-1}{8,1}{7,-1}{9,1}{7,-1}
{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1}{3,-1}
{1,1}{2,-1}{4,1}{5,-1}{2,1}{1,-1}{5,1}{4,-1}
{2,1}{3,-1}{4,1}{5,-1}{3,1}{2,-1}{5,1}{4,-1}
{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}{6,-1}
{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}{6,-1}
{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}{6,-1}
{4,1}{5,-1}{6,1}{7,-1}{5,1}{4,-1}{7,1}{6,-1}
{1,1}{2,-1}{7,1}{8,-1}{2,1}{1,-1}{8,1}{7,-1}
{2,1}{3,-1}{7,1}{8,-1}{3,1}{2,-1}{8,1}{7,-1}
{3,1}{4,-1}{7,1}{8,-1}{4,1}{3,-1}{8,1}{7,-1}
{4,1}{5,-1}{7,1}{8,-1}{5,1}{4,-1}{8,1}{7,-1}
{1,1}{2,-1}{8,1}{9,-1}{2,1}{1,-1}{9,1}{8,-1}
{2,1}{3,-1}{8,1}{9,-1}{3,1}{2,-1}{9,1}{8,-1}
{3,1}{4,-1}{8,1}{9,-1}{4,1}{3,-1}{9,1}{8,-1}
{4,1}{5,-1}{8,1}{9,-1}{5,1}{4,-1}{9,1}{8,-1}
{6,1}{7,-1}{8,1}{9,-1}{7,1}{6,-1}{9,1}{8,-1}
{3,-1}{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1}
{4,-1}{1,1}{2,-1}{4,1}{5,-1}{2,1}{1,-1}{5,1}
{4,-1}{2,1}{3,-1}{4,1}{5,-1}{3,1}{2,-1}{5,1}
{6,-1}{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}
{6,-1}{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}
{6,-1}{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}
{6,-1}{4,1}{5,-1}{6,1}{7,-1}{5,1}{4,-1}{7,1}
{7,-1}{1,1}{2,-1}{7,1}{8,-1}{2,1}{1,-1}{8,1}
{7,-1}{2,1}{3,-1}{7,1}{8,-1}{3,1}{2,-1}{8,1}
{7,-1}{3,1}{4,-1}{7,1}{8,-1}{4,1}{3,-1}{8,1}
{7,-1}{4,1}{5,-1}{7,1}{8,-1}{5,1}{4,-1}{8,1}
{8,-1}{1,1}{2,-1}{8,1}{9,-1}{2,1}{1,-1}{9,1}
{8,-1}{2,1}{3,-1}{8,1}{9,-1}{3,1}{2,-1}{9,1}
{8,-1}{3,1}{4,-1}{8,1}{9,-1}{4,1}{3,-1}{9,1}
{8,-1}{4,1}{5,-1}{8,1}{9,-1}{5,1}{4,-1}{9,1}
{8,-1}{6,1}{7,-1}{8,1}{9,-1}{7,1}{6,-1}{9,1}

19

{3,1}{4,-1}{1,1}{2,-1}{4,1}{3,-1}{2,1}{1,-1}
{4,1}{5,-1}{1,1}{2,-1}{5,1}{4,-1}{2,1}{1,-1}
{4,1}{5,-1}{2,1}{3,-1}{5,1}{4,-1}{3,1}{2,-1}
{6,1}{7,-1}{1,1}{2,-1}{7,1}{6,-1}{2,1}{1,-1}
{6,1}{7,-1}{2,1}{3,-1}{7,1}{6,-1}{3,1}{2,-1}
{6,1}{7,-1}{3,1}{4,-1}{7,1}{6,-1}{4,1}{3,-1}
{6,1}{7,-1}{4,1}{5,-1}{7,1}{6,-1}{5,1}{4,-1}
{7,1}{8,-1}{1,1}{2,-1}{8,1}{7,-1}{2,1}{1,-1}
{7,1}{8,-1}{2,1}{3,-1}{8,1}{7,-1}{3,1}{2,-1}
{7,1}{8,-1}{3,1}{4,-1}{8,1}{7,-1}{4,1}{3,-1}
{7,1}{8,-1}{4,1}{5,-1}{8,1}{7,-1}{5,1}{4,-1}
{8,1}{9,-1}{1,1}{2,-1}{9,1}{8,-1}{2,1}{1,-1}
{8,1}{9,-1}{2,1}{3,-1}{9,1}{8,-1}{3,1}{2,-1}
{8,1}{9,-1}{3,1}{4,-1}{9,1}{8,-1}{4,1}{3,-1}
{8,1}{9,-1}{4,1}{5,-1}{9,1}{8,-1}{5,1}{4,-1}
{8,1}{9,-1}{6,1}{7,-1}{9,1}{8,-1}{7,1}{6,-1}
{5,1}{6,1}{7,-1}{5,1}{7,1}{6,-1}{5,-1}{7,1}{6,-1}
{6,-1}{5,1}{6,1}{7,-1}{5,1}{7,1}{6,-1}{5,-1}{7,1}
{6,1}{7,-1}{5,1}{6,1}{7,-1}{5,-1}{7,1}{6,-1}{5,-1}

A.2 Relations in B8

{4,1}{7,1}{4,-1}{7,-1}
{7,-1}{4,1}{7,1}{4,-1}
{7,1}{4,1}{7,-1}{4,-1}
{2,1}{1,1}{4,1}{1,-1}{1,-1}
{3,1}{2,1}{4,1}{2,-1}{2,-1}
{6,1}{5,1}{7,1}{5,-1}{5,-1}
{7,1}{6,1}{7,1}{6,-1}{6,-1}
{1,-1}{2,1}{1,1}{4,1}{1,-1}
{2,-1}{3,1}{2,1}{4,1}{2,-1}
{5,-1}{6,1}{5,1}{7,1}{5,-1}
{6,-1}{7,1}{6,1}{7,1}{6,-1}
{1,1}{1,1}{4,-1}{1,-1}{2,-1}
{2,1}{2,1}{4,-1}{2,-1}{3,-1}
{5,1}{5,1}{7,-1}{5,-1}{6,-1}
{6,1}{6,1}{7,-1}{6,-1}{7,-1}
{2,-1}{1,1}{1,1}{4,-1}{1,-1}
{3,-1}{2,1}{2,1}{4,-1}{2,-1}
{6,-1}{5,1}{5,1}{7,-1}{5,-1}
{7,-1}{6,1}{6,1}{7,-1}{6,-1}
{3,1}{3,1}{4,-1}{3,-1}{4,-1}
{6,1}{6,1}{7,-1}{6,-1}{7,-1}
{4,-1}{3,1}{3,1}{4,-1}{3,-1}
{7,-1}{6,1}{6,1}{7,-1}{6,-1}

20

{4,1}{3,1}{4,1}{3,-1}{3,-1}
{7,1}{6,1}{7,1}{6,-1}{6,-1}
{1,1}{2,-1}{4,1}{2,1}{1,-1}{4,-1}
{2,1}{3,-1}{4,1}{3,1}{2,-1}{4,-1}
{4,1}{6,1}{7,-1}{4,-1}{7,1}{6,-1}
{1,1}{2,-1}{7,1}{2,1}{1,-1}{7,-1}
{2,1}{3,-1}{7,1}{3,1}{2,-1}{7,-1}
{3,1}{4,-1}{7,1}{4,1}{3,-1}{7,-1}
{5,1}{6,-1}{7,1}{6,1}{5,-1}{7,-1}
{4,-1}{1,1}{2,-1}{4,1}{2,1}{1,-1}
{4,-1}{2,1}{3,-1}{4,1}{3,1}{2,-1}
{6,-1}{4,1}{6,1}{7,-1}{4,-1}{7,1}
{7,-1}{1,1}{2,-1}{7,1}{2,1}{1,-1}
{7,-1}{2,1}{3,-1}{7,1}{3,1}{2,-1}
{7,-1}{3,1}{4,-1}{7,1}{4,1}{3,-1}
{7,-1}{5,1}{6,-1}{7,1}{6,1}{5,-1}
{4,1}{1,1}{2,-1}{4,-1}{2,1}{1,-1}
{4,1}{2,1}{3,-1}{4,-1}{3,1}{2,-1}
{6,1}{7,-1}{4,1}{7,1}{6,-1}{4,-1}
{7,1}{1,1}{2,-1}{7,-1}{2,1}{1,-1}
{7,1}{2,1}{3,-1}{7,-1}{3,1}{2,-1}
{7,1}{3,1}{4,-1}{7,-1}{4,1}{3,-1}
{7,1}{5,1}{6,-1}{7,-1}{6,1}{5,-1}
{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1}{2,-1}
{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1}{3,-1}
{5,1}{7,-1}{5,1}{6,-1}{7,1}{5,-1}{7,1}{6,-1}
{2,-1}{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1}
{3,-1}{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1}
{6,-1}{5,1}{7,-1}{5,1}{6,-1}{7,1}{5,-1}{7,1}
{2,1}{3,-1}{1,1}{3,-1}{2,1}{1,-1}{3,1}{1,-1}
{3,1}{4,-1}{2,1}{4,-1}{3,1}{2,-1}{4,1}{2,-1}
{6,1}{7,-1}{5,1}{7,-1}{6,1}{5,-1}{7,1}{5,-1}
{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1}{3,-1}
{1,1}{2,-1}{5,1}{6,-1}{2,1}{1,-1}{6,1}{5,-1}
{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1}{5,-1}
{3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1}{5,-1}
{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}{6,-1}
{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}{6,-1}
{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}{6,-1}
{3,-1}{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1}
{5,-1}{1,1}{2,-1}{5,1}{6,-1}{2,1}{1,-1}{6,1}
{5,-1}{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1}
{5,-1}{3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1}
{6,-1}{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}
{6,-1}{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}

21

{6,-1}{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}
{3,1}{4,-1}{1,1}{2,-1}{4,1}{3,-1}{2,1}{1,-1}
{5,1}{6,-1}{1,1}{2,-1}{6,1}{5,-1}{2,1}{1,-1}
{5,1}{6,-1}{2,1}{3,-1}{6,1}{5,-1}{3,1}{2,-1}
{5,1}{6,-1}{3,1}{4,-1}{6,1}{5,-1}{4,1}{3,-1}
{6,1}{7,-1}{1,1}{2,-1}{7,1}{6,-1}{2,1}{1,-1}
{6,1}{7,-1}{2,1}{3,-1}{7,1}{6,-1}{3,1}{2,-1}
{6,1}{7,-1}{3,1}{4,-1}{7,1}{6,-1}{4,1}{3,-1}
{4,1}{5,1}{6,-1}{4,1}{6,1}{5,-1}{4,-1}{6,1}{5,-1}
{5,-1}{4,1}{5,1}{6,-1}{4,1}{6,1}{5,-1}{4,-1}{6,1}
{5,1}{6,-1}{4,1}{5,1}{6,-1}{4,-1}{6,1}{5,-1}{4,-1}

B Expected Computational Efficiency and Performance

When analyzing the computational efficiency of WalnutDSA, one must look at four distinct
processes: key-pair generation, raw signature generation, signature rewriting, and signature
validation.

A note on notation: when declaring the expected computation efficiency of the various
subprocesses of WalnutDSA, the basis of the order is explicitly used when available. For
example, using “O(N)” implies a linear operation in N , which is the number of strands of the
braid in BN , whereas using “O(n)” is a generic linear operation.

Performance was tested on a Linux server configured with 8 cores of Intel Xeon X5355
at 2.66GHz running at 2660237000 cycles per second and 32 GB RAM. The test code was
compiled using: gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv
-msse2.

B.1 Key-Pair Generation

Key-pair generation is straightforward. The private key is purely a randomly generated braid,
which takes O(`) operations to create and freely reduce. Generating the T-values is also an
O(N) operation (but N is small). Finally, computing the public key via E-Multiplication
requires N multiplies and 2N additions repeated ` times, so it is still O(N`) (remembering
that N is fixed, so really O(`)). We expect this to take fractions of a millisecond on the target
platform. We also expect this function to be fast even on small processors because it is purely
a function of the speed of the random number generator.

As shown in Figures 1 and 2, key generation on our test platform takes between 1.06-1.17
million cycles for a 128-bit key and 2.8-3.05 million cycles for a 256-bit key. This equates to
2273-2509 and 872-950 keys generated per second.

B.2 Raw Signature Generation

Raw signature generation is the process of taking the hash of the input message, converting
the hash to a braid, generating cloaking elements, and putting the “raw” signature together
prior to rewriting. We separate this from the rewriting portion because there are multiple
rewriting methods proposed with different performance profiles.

22

Fig. 1: Timing for generating 128-bit keys Fig. 2: Timing for generting 256-bit keys

Hashing the message is an O(n) operation in the length of the input message and is out of
the control of WalnutDSA. We expect a good implementation of SHA2-256 or SHA2-512 to
behave appropriately.

After hashing, we convert the hash output to a braid (this is an O(n) operation in the size
of the hash output), and generate the three sets of cloaking elements (each an O(L) operation).
Finally, we invert the private key (O(`)) and put it all together (O(n)). Of all these operations,
the hash function is the most computationally intensive. The rest of the operations are purely
limited on the speed of the random number generator. We expect this operation to be fast
even on tiny devices.

B.3 Signature Rewriting

Rewriting the signature is the most computationally intensive operation in WalnutDSA, al-
though it is required for signature security. There are three rewriting options:

1. BKL + Dehornoy
2. Stochastic Rewriting
3. Stochastic Rewriting + Dehornoy

The BKL algorithm, which outputs the canonical form of any braid, runs in O(n2) time
in the length of the input braid. BKL will convert any equivalent braid into the exact same
output braid, making it easy to detect “sameness.” Of course the canonical form of a braid is
often much longer than the original.

Enter Dehornoy, which takes a braid and shortens it by finding ways to manipulate the
braid to remove inverses, even if they are not adjacent. The Dehornoy algorithm also runs in
O(n2) time in the length of the input braid.

However, both BKL and Dehnory run in statistical time, not fixed time. Depending on
the inputs they can complete very quickly or run somewhat longer. Moreover, the output
is variable in length based on the inputs, which implies that WalnutDSA signatures are not
constant length.

Running our implementation through SUPERCOP, we generated three sets of keys and
then for each key ran 32 runs for each of 48 different message sizes (see Figure 3). At 128-
bit security the signature generation took between 190-250 million cycles. The variabiliy in
execution time is due to the varying lengths of signatures across different inputs, how the hash

23

Fig. 3: SUPERCOP output for generating 128-bit signa-
tures with BKL and Dehornoy

Fig. 4: SUPERCOP output for generating 256-bit signa-
tures with BKL and Dehornoy

output gets converted into varying lengths of braids, and how that interacts with the random
cloaking elements.

For 256-bit security (see Figure 4), the execution time increased to 600-800 million cycles.

Fig. 5: SUPERCOP output for generating 128-bit signa-
tures with Stochastic Rewriting and Dehornoy

Fig. 6: SUPERCOP output for generating 256-bit signa-
tures with Stochastic Rewriting and Dehornoy

The Stochastic Rewriting method is a mostly-linear operation that randomly replaces sec-
tions of a braid using a known set of braid relations. Its running time is slightly greater than
linear, because the length of the braid increases on every round. The exact complexity is
greater than O(n) but less than O(n log(n)).

Fig. 7: SUPERCOP output for generating 128-bit signa-
tures with Stochastic Rewriting without Dehornoy

Fig. 8: SUPERCOP output for generating 256-bit signa-
tures with Stochastic Rewriting without Dehornoy

24

As shown in Figures 5 and 6, replacing BKL with Stochastic Rewriting provides a significant
speed increase. With the three keys randomly chosen at the 128-bit security level, signatures
generated in 62-74 million cycles.

At the 256-bit security level speed is also increased. Those keys signed messages in 200-240
million cycles. Using Stochastic Rewriting shows a 2.5-3x speed improvement over BKL.

Moreover, it’s likely that Stochastic Rewriting could be implemented on an embedded de-
vice. However in this case it’s more likely that the embedded device would only run Stochastic
Rewriting, then send the signature over to a more powerful device (trading of signature size
and transmission time for computation capability). The larger device could run Dehornoy and
reduce the signature for storage.

When you remove Dehornoy, our test system was able to generate a 128-bit signature in
60-70 million cycles (see Figure 7), and a 256-bit signature in 190-215 million cycles (see Figure
8). The complexity reduction is such that an embedded device may be sufficient; however, the
resulting signature is longer.

B.4 Signature Validation

Fig. 9: SUPERCOP output for verifying 128-bit signatures
with BKL and Dehornoy

Fig. 10: SUPERCOP output for verifying 256-bit signa-
tures with BKL and Dehornoy

Validating a signature requires hashing the message, converting the hash output to a braid
(O(n)), two sets of E-Multiplication (O(n) in the length of the signature and the length of
the converted hash output), one matrix multiplication (O(N3)), and one matrix comparison
(O(N2)).

Fig. 11: SUPERCOP output for verifying 128-bit signa-
tures with Stochastic Rewriting and Dehornoy Fig. 12: SUPERCOP output for verifying 256-bit signa-

tures with Stochastic Rewriting and Dehornoy

25

Fig. 13: SUPERCOP output for verifying 128-bit signa-
tures with Stochastic Rewriting, without Dehornoy

Fig. 14: SUPERCOP output for verifying 256-bit signa-
tures with Stochastic Rewriting, without Dehornoy

Figure 9 shows clearly that for smaller messages the mathematical computation domi-
nates, but the hash computation starts to dominate once input messages reach about 8000
bytes. Specifically, looking at Table 3, it appears that the run time starts to increase once
messages reach somewhere between 1500-4000 bytes, and the hash function dominates, more
than doubling the execution time, between 16000-20000 bytes. A significantly optimized hash
implementation is clearly a requirement.

Message Size (B) 567 709 887 1109 1387 1734 2168 2711 3389 4237 5297 6622
Cycles 266344 248603 234803 236032 233528 241642 265536 243007 266480 290505 310513 316516

Message Size (B) 8278 10348 12936 16171 20214 25268 31586 39483 49354 61693 77117 96397
Cycles 308187 339611 541637 374523 424190 487219 518486 632247 734413 820023 997092 1217209

Table 3: SUPERCOP cycle counts for signature verification

The same pattern, where message size affects verification speed, can also be seen for 256-bit
signatures in Figure 10. Similarly, Figures 11, 12, 13, and 14 all exhibit the same structure.
The main difference between them all is the baseline computation time. The graphs show that
Dehornoy vs non-Dehornoy is the main component to speed (which is to be expected, consider-
ing validation computation time is linear in the length of the signature, and Dehornoy reduces
the signature size). Still, without Dehornoy the base verification time is around 350000 cycles
for 128-bit signatures and about 875000 cycles for 256-bit signatures, and when Dehornoy is
applied those times are reduced to 200000 and 500000 cycles.

In addition to working on the target platform with SUPERCOP, we also took an average-
length signature at 128-bit security level and ran the verification computation on various
embedded processors used on devices associated with the Internet of Things. See Table 4 for
the raw data.

C Expected Security Strength

There are several known exponential attacks against WalnutDSA (see appendix E). In other
cases the best-known attack is brute-force. See [1] for a full security analysis. The summary is
that for a given security level (SL):

26

Platform Bits Clock (MHz) ROM RAM Cycles Time (ms)
ARM Cortex R5 32 200 2024 1060 483,210 2.4
ARM Cortex M4 32 168 4512 1116 817,545 4.866
RISC-V FE310 32 256 n/a n/a 2,207,010 8.62
ARM Cortex M3 32 48 4568 1116 1,001,829 20.89
ARM Cortex M0 32 32 4524 1156 3,262,152 101.6

RL78 16 32 3830 1116 4,215,741 131.7

Table 4: Raw WalnutDSA performance data for verifying 128-bit signatures

1. A public key is a pair of N × N matrices of elements in Fq, which implies there are a
maximum of qN2 potential options per matrix. However, due to the construction, this is
reduced to a minimum of qN(N−3) potential matrices. We have chosen N and q such that
this value exceeds 2SL possible public keys.
Moreover, to defeat a Pollard-rho style attack, we need to ensure that qN(N−3)−1 > 22SL.
We have chosen N and q such that this inequality holds.

2. A secret key is a pair of braidwords in BN of length `. The number ` is chosen such that
there are at least 2SL unique braids when randomly creating a braid of length ` (prior to
free reduction).

3. Concealed cloaking elements are chosen and inserted randomly into the cloaking elements
(v1, v2, and v3) and private keys to ensure sufficient protection against [11], reducing it
to a brute-force search. Specifically, we ensure a brute-force level of (N !)κ > 2SecurityLevel

for all parameter levels because κ = 6κ1 + 2κ2. Collisions in the hash or in these random
permutations do not help an attacker, so no birthday attack can be leveraged.

4. Reversing the rewriting schemes is also a brute-force problem which far exceeds 2SL oper-
ations to reverse.

5. The message encoding parameters were chosen to ensure that the computed dimension of
the resulting vector space is high enough such that the inequality qdimension > 22SL holds.

6. The choices of N and q are further defined to ensure that E-Multiplication is a one-way
function and that reversing it requires q(N−1)/2

√
60 run time6.

We have increased our values for κ and ` by 25% beyond the minimum required to meet
the desired security level, both for 128- and 256-bit (conventional) security. This increase is
purely for future proofing against minor errors or miscalculations in the number of possible
braid or braidwords or improvements in enumeration techniques.

We believe that WalnutDSA is subject to Grover so we expect that the quantum security
is half of the conventional security.

D Advantages and Limitations

The main advantages of WalnutDSA are that key generation and signature validation are
extremely fast, even on small, constrained devices. These functions can be implemented in
very little code and compile down to very small targets. Indeed, the raw signature validation
on a 48MHz ARM Cortex M3 can complete in 5.7ms in compiled C software. Due to its nature,
6 The factor

√
60 was provided by the authors of the attack as a parameter they set

27

signature validation can easily be computed even on 16- or 8-bit processors with limited RAM
and ROM and decent performance.

The main limitation of WalnutDSA is that signature generation is more expensive because
the known braid rewriting techniques are more computationally intensive.

E Known Attacks

If Priv(S) = Priv(S’) then there is a factoring attack that can potentially create a valid
signature by combining multiple signatures to create new words. However, the signatures
generated by this attack are orders of magnitude longer than a valid WalnutDSA signature
(estimated at a length 232 or longer), and this attack is completely defeated by ensuring that
Priv(S) 6= Priv(S’). See [1] for an analysis of this attack.

In January, 2018, [4] noted that the factoring attack could still succeed even when Priv(S) 6=
Priv(S’) with a resulting forged signature double the length of the original attack. The original
attacks resulted in forgeries well greater than the 214 limit imposed by this specification, and
the smallest forgery they conjecture would still result in signatures that are 27 times longer
than the allowed limit. Further reductions of the forged signatures by e.g. [8] only result in an
additional 10% gain, still resulting in signatures well beyond the allowed limit.

Also in January, 2018, [7] showed a Pollard-rho style attack which showed that to reach a
desired security level of k-bits, qN(N−3)−1 > 22k. This inequality is satisfied with the parameters
in this specification.

In Febrary, 2018, [5] found that the original WalnutDSA encoding parameter (how to
convert the hash result to a braid) was not injective. He also noted that the vector space
generated by the encoding required a dimension high enough to reach the desired security
level, specifically, to reach a desired security level of k-bits, qdimension > 22k. For a parameter of
N = 10 and the message encoding parameters in this specification, the dimension can easily
be determined to be 66 when τ1 = τ2 = 1, and 82 when τ1 is random and τ2 = −τ−11 , which
satisfies this inequality for the parameters listed in this specification.

In April, 2018, [6] found another exponential factoring attack that generates short replace-
ment private keys. The original code they provided was proven to run in time qN−5/2. They
claim they reduced this to qN/2−1 but the updated code they supplied failed in tests with
simple inputs like B3F7 more than half the time, sometimes taking well over 12 hours to solve
one input, such that this runtime could not be validated. However, assuming this qN/2−1 is
correct, a simple parameter change to N=11, q=231 − 1 meets this requirement for 128-bit
security, and N=11, q=261 − 1 for 256-bit security.

This run time assumes τ1 = τ2 = 1, however, with the change to a prime field, additional
methods to create cloaking elements become available which no longer requires T-values to be
1. With this change, the theoretical runtime for this attack increases7 to q(N−1)/2

√
60, which

allows decreasing N to 10 and maintaining the 128- and 256-bit security levels.
In May, 2018, [11] found a braid-based attack that found and removed the cloaking el-

ements in order to determine the secret braids. This attack required cloaking elements be
conjugates and also knowledge of the cloaked permutation. Adding the concealed cloaking
elements inside the left and right sides of v1, v2, and v3 makes them no longer conjugates,
7 The

√
60 factor was supplied by the authors of the attack, focused on B8, and may well be larger for N=10.

28

and with the unknown permutations it requires searching through N ! permutations for each
concealed cloaking element. By adding a total of κ concealed cloaking elements it requires
(N !)κ work, which can be made sufficiently large to ensure 128- and 256- bit security levels.

The next best-known attack against WalnutDSA is a brute force search. See [1] for a full
security analysis, including a proof of security under EUF-CMA.

There are no known other attacks against WalnuntDSA as of this writing.

29

