
WalnutDSATM: A Quantum-Resistant Digital Signature

Algorithm

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E. Gunnells

SecureRF Corporation
100 Beard Sawmill Rd #350, Shelton, CT 06484

ianshel@securerf.com, datkins@securerf.com, dgoldfeld@securerf.com, pgunnells@securerf.com

Abstract. In 2005 I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux introduced E-MultiplicationTM,
a quantum-resistant, group-theoretic, one-way function which can be used as a basis for many
different cryptographic applications. To date, all analysis and attacks on E-Multiplication
have been exponential in their runtime and all have been readily addressed and defeated.

This paper introduces WalnutDSA, a new E-Multiplication-based public-key digital signature
method that provides very efficient verification, allowing low-powered and constrained devices
to quickly and inexpensively validate digital signatures (e.g., a certificate or authentication).
This paper presents an in-depth discussion of the construction of the digital signature al-
gorithm, analyzes the security of the scheme, provides a proof of security under EUF-CMA,
and discusses the practical results from implementations on several constrained devices. With
the implementation of parameters that defeat all known attacks, WalnutDSA is currently the
fastest signature verification method in the NIST PQC standardization process and performs
orders of magnitude faster than ECC, even on low-end embedded hardware. WalnutDSA
delivers a 12-25x speed improvement over ECDSA on most platforms, and a 31x speed im-
provement on a 16-bit microcontroller, making it an ideal solution for low-resource processors
found in the Internet of Things (IoT).

Keywords: Group Theoretic Cryptography, Digital Signature, E-Multiplication, Braids, In-
ternet of Things, IoT

1 Introduction

Digital signatures provide a means for one party to create a document that can be sent through
a second party and verified for integrity by a third party. This method ensures that the first
party created the document and that it was not modified by the second party. Historically, digital
signatures have been constructed using various number-theoretic, public-key methods like RSA,
DSA, and ECDSA. However, these methods are not very efficient in tiny devices running on 16-bit
or even 8-bit constrained processors (let alone some constrained 32-bit platforms), or systems with
limited space or energy.

Digital signatures based on hard problems in group theory are relatively new. In 2002, Ko, Choi,
Cho, and Lee [30] proposed a digital signature based on a variation of the conjugacy problem in
non-commutative groups. In 2009, Wang and Hu [45] introduced a digital signature with security
based upon the hardness of the root problem in braid groups. See also [28]. The attacks introduced
in [18], [19], [21], and [26] suggest that the schemes by Ko et al. and Wang and Hu may not be
practical over braid groups in low-resource environments.



Previous Work

E-Multiplication [5] is a group-theoretic, one-way function first introduced by I. Anshel, M. Anshel,
D. Goldfeld, and S. Lemieux in 2005 [5]. E-Multiplication uses a combination of braids, matrices,
and finite fields to translate the non-abelian, infinite group into a computable system. It has proven
to be a very efficient, general-purpose, quantum-resistant one-way function; its use is broader than
the original key-agreement construction. For example, using E-Multiplication as the basic building
block, Anshel, Atkins, Goldfeld, and Gunnells recently introduced a cryptographic hash function,
AEHash [3], which has been implemented using very little code space on a 16-bit platform [4].

Implementations of E-Multiplication in various instances have shown that code space is small
and runtime is extremely rapid, with constructions using E-Multiplication outperforming competing
methods, especially in small, constrained devices.

Our Contribution

This paper introduces a new quantum-resistant digital signature algorithm, WalnutDSATM. Its
security is based on the difficulty of reversing E-Multiplication. Details are given in §10. Reversing
E-Multiplication is a hard problem in braid groups that is very different from the Conjugacy Search
Problem (CSP), which formed the foundation of the earliest cryptographic systems based on the
braid group. In fact, WalnutDSA appears immune to all the types of attacks related to the CSP
given in [18], [19], [21], and [26], as well as the very recent work of [25], [8], [9], and [14] (for a fuller
discussion see §9 below - linear algebraic, group theoretic, and probabilistic attacks). Likewise,
attacks on the original 2005 key agreement construction noted in [7], [29], and [38], do not apply
because the construction’s structures do not map.

E-Multiplication is rapidly executable, even in the smallest of environments, and as a result,
WalnutDSA provides very fast signature verification. We implemented WalnutDSA; its performance
in various environments outperformed ECDSA by orders of magnitude in all cases tested using less
code space and energy.

This paper proceeds as follows: First, it reviews the colored Burau representation of the Braid
Group and E-Multiplication; Second, it introduces the concept of a cloaking element and shows the
connection between braid groups, cloaking elements, and WalnutDSA; Third, it shows WalnutDSA
key generation; Fourth, it presents a practical implementation via a message encoder algorithm
as well as the signature generation and verification processes; Fifth, it discusses and analyzes the
security implications associated with WalnutDSA; Sixth, it proposes a slightly modified version of
WalnutDSA and presents a security proof under EUF-CMA that breaking this version will break
the underlying hard problem; Seventh, it discusses brute-force security and quantum resistance; and
Eighth, it tests WalnutDSA’s size and performance characteristics on several constrained devices.

2 Colored Burau Representation of the Braid Group

For, N ≥ 2, let BN denote the N -strand braid group with Artin generators {b1, b2, . . . , bN−1},
subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2), (1)

bibj = bjbi, (|i− j| ≥ 2). (2)
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Thus any β ∈ BN can be expressed as a product of the form

β = bǫ1i1 bǫ2i2 · · · b
ǫk
ik
, (3)

where ij ∈ {1, . . . , N −1}, and ǫj ∈ {±1}. Note that β is not uniquely represented by (3); any braid
has infinitely many different expressions in terms of the Artin generators, thanks to the relations
(1) and (2).

Let SN be the group of permutations on N letters. Each braid β ∈ BN determines a permutation
in SN as follows. For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps
i→ i+ 1, i+ 1→ i, and leaves {1, . . . , i− 1, i+ 2, . . . , N} fixed. Then the map bi 7→ σi extends to
a surjective homomorphism BN → SN . A braid is called pure if its corresponding permutation is
trivial (i.e., the identity permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. We introduce the
colored Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N ]
)

× SN .

. For each Artin generator bi we define the N × N colored Burau matrix CB(bi)) generator as
follows [36]. If i = 1, we put

CB(b1) =



















−t1 1 0 · · · 0
0 1 0 · · ·

...
... 1

. . .

1



















, (4)

and for 2 ≤ i ≤ N − 1, we define CB(bi) by

CB(bi) =

















1
. . .

ti −ti 1
. . .

1

















, (5)

where the indicated variables appear in row i. We similarly define CB(b−1
i ) by modifying (5) slightly:

CB(b−1
i ) =

















1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

















,
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where again the indicated variables appear in row i, and as above if i = 1 the leftmost 1 is omitted.
Recall that each bi has an associated permutation σi. We may then associate to each braid

generator bi (respectively, inverse generator b−1
i ) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1
i ), σi)). We now wish to define a multiplication of such colored Burau pairs. To

accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN ) in
N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the variables.
We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair

associated with the product b±i · b±j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(

CB(b±i ) · (σiCB(b±j )), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

as in (3), we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) =

(CB(bǫ1i1 ) ·
σi1CB(bǫ2i2 ) ·

σi1
σi2CB(bǫ3i3 )) · · ·

σi1
σi2

···σik−1CB(bǫkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

3 E-Multiplication

E-Multiplication was first introduced in [5] as a one-way function used as a building block to create
multiple cryptographic constructions. We recall its definition here.

An ordered list of entries in the finite field (named T-values) is defined to be a collection of
non-zero field elements:

{τ1, τ2, . . . , τN} ⊂ F
×
q .

Given a set of T-values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN ) to obtain an
element of Fq:

f(t1, t2, . . . , tN ) ↓t-values := f(τ1, τ2, . . . , τN ).

We extend this notation to matrices over Laurent polynomials in the obvious way.
With all these components in place, we can now define E-Multiplication. By definition, E-

Multiplication is an operation that takes as input two ordered pairs,

(M,σ0), (CB(β), σβ),
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where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N,Fq), and σ0 ∈ SN . We denote
E-Multiplication with a star: ⋆. The result of E-Multiplication, denoted

(M ′, σ′) = (M,σ0) ⋆ (CB(β), σβ),

will be another ordered pair (M ′, σ′) ∈ GL(N,Fq)× SN .
We define E-Multiplication inductively. When the braid β = b±i is a single generator or its

inverse, we put

(M,σ0) ⋆
(

CB(b±i
)

, σb±
i
) =

(

M · σ0
(

CB(b±i
)

) ↓t-values, σ0 · σb±
i

)

.

In the general case, when β = bǫ1i1 b
ǫ2
i2
· · · bǫkik , we put

(M,σ0) ⋆ (CB(β), σβ) = (M,σ0) ⋆ (CB(bǫ1i1 ), σbi1
) ⋆ (CB(bǫ2i2 ), σbi2

) ⋆ · · · ⋆ (CB(bǫkik ), σbik
), (6)

where we interpret the right of (6) by associating left-to-right. One can check that this is independent
of the expression of β in the Artin generators.

Convention: Let β ∈ BN with associated permutation σβ ,∈ SN . Let M ∈ GL(N,Fq) and σ ∈ Sn.
For ease of notation, we let (M,σ) ⋆ β := (M,σ) ⋆ (CB(β), σβ).

4 Cloaking Elements

The security of WalnutDSA is based on the existence of certain braid words which we term cloaking
elements. They are defined as follows.

Definition 4.1 (Cloaking element) Let M ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure
braid subgroup of BN is termed a cloaking element of (M,σ) if

(M,σ) ⋆ v = (M,σ).

Let Cloak(M,σ) denote the set of all such cloaking elements.

Thus a cloaking element is characterized by the property that it essentially disappears when
performing E-Multiplication i.e., a cloaking element stabilizes the element (M,σ) under the action of
BN on GL(N,Fq)×SN which E-Multiplication defines. Thus the following proposition is immediate:

Proposition 4.2 The set Cloak(M,σ) forms a subgroup of BN .

We remark that whether a braid element is a cloaking element is contingent on the T-values,
which are used in defining the operation ⋆. It is clear that cloaking elements must exist: the braid
group is infinite and any action of an infinite group on a finite set will necessarily have stabilizers.
Further, it is clear that generating very long cloaking elements is straightforward: starting with an
arbitrary braid v, first raise v to the order of its associated permutation σv, yielding a purebraid
v̄. Then raise v̄ to the (generally very large) order of the matrix (1, 1) ⋆ σ v̄ (where (1, 1) denotes
the identity in GL(N,Fq) × SN ). What is not immediately obvious is how to construct cloaking
elements sufficiently short to be useful. The following proposition provides one technique to build
them:
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Proposition 4.3 Fix integers N ≥ 2, and 1 ≤ a < b ≤ N. Assume that the T-values τa and τb
satisfy the property τa · τb = −1. Let M ∈ GL(N,Fq) and σ ∈ SN . Then a cloaking element v
of (M,σ) is given by v = wb4iw

−1 where bi is any Artin generator (1 ≤ i < N), and where the
permutation corresponding to w ∈ BN satisfies

i 7−→ σ−1(a), i+ 1 7−→ σ−1(b).

In addition, if the field Fq has characteristic 2, then by choosing w as above the braid w b2iw
−1 is

also a cloaking element for (M,σ).

Proof. To facilitate a compact discussion, we consider the case N = 4, and i = 2. By definition we
have that,

CB(b2i ) =

















1 0 0 0
t2 −t2 1 0
0 0 1 0
0 0 0 1









·

σ2








1 0 0 0
t2 −t2 1 0
0 0 1 0
0 0 0 1









, Id
SN









=

















1 0 0 0
(t2 − t2t3) t2t3 (1− t2) 0

0 0 1 0
0 0 0 1









, Id
SN









,

where Id
SN

is the identity permutation. Thus

CB(b42) =



















1 0 0 0
(t2 − t2t3) t2t3 (1− t2) 0

0 0 1 0
0 0 0 1









·

Id
SN









1 0 0 0
(t2 − t2t3) t2t3 (1− t2) 0

0 0 1 0
0 0 0 1









, Id
SN











=

















1 0 0 0
(t2 − t2t3) + t2t3(t2 − t2t3) (t2t3)

2 t2t3(1− t2) + (1− t2) 0
0 0 1 0
0 0 0 1









, Id
SN









,

and we see that by making the assumption t2t3 = −1, CB(b42) =
(

IdN , Id
SN

)

. The argument is
completed by conjugating this fourth power by a w ∈ BN where the permutation corresponding to
w satisfies

i 7−→ σ−1(a), i+ 1 7−→ σ−1(b).

As an aside, we note that the above computation can be iterated: for k ≥ 2,

Matrix Part(CB(b2
k

i )) =

=









1 0 0 0

(t2 − t2t3)(1 + (t2t3)) · · · (1 + (t2t3)
2k−2

) (t2t3)
2k−1

(1− t2)(1 + (t2t3)) · · · (1 + (t2t3)
2k−2

) 0
0 0 1 0
0 0 0 1









.
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The above construction can be applied the following way. Fix a braid β, say

β = bǫ1i1 · · · b
ǫℓ
iℓ
,

and choose some point 1 ≤ k ≤ ℓ. Clearly, β = x1 · x2 where x1 = bǫ1i1 · · · b
ǫk−1

ik−1
and x2 = bǫkik · · · b

ǫℓ
iℓ
,

and we hence for any for any matrix/permutation pair (m0, σ0), we have that

(m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2.

Using Proposition 1.3 we can generate a cloaking element v for the product of σ0 · σx1
where

σx1
deotes the permutation associated with x1. By construction, given any matrix M we have that

(M,σ0 · σx1
) ⋆ v = (M,σ0 · σx1

). Since (m0, σ0) ⋆ x1 takes the form (m0, σ0) ⋆ x1 = (M, , σ0 · σx1
),

we have that

(m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2

= (M,σ0 · σx1
) ⋆ x2

= (M,σ0 · σx1
) ⋆ v ⋆ x2

= ((m0, σ0) ⋆ x1) ⋆ v ⋆ x2 = (m0, σ0) ⋆ x1 ⋆ v ⋆ x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,

which has the property that (m0, σ0) ⋆ β = (m0, σ0) ⋆ β′. We shall refer to this inserted cloaking
element as a concealed cloaking element. The above discussion is summarized in the following
proposition:

Proposition 4.4 Given a braid β and a matrix/permutation pair (m0, σ0) it is possible to generate
another braid β′ so that (m0, σ0) ⋆ β = (m0, σ0) ⋆ β

′ by randomly inserting a cloaking element for a
permutation that is not a priori known, i.e., a concealed cloaking element within β. In the case β
is itself a cloaking element for a given permutation, the resulting β′ will also be a cloaking element
for the same permutation, but will have a distinct structure from β.

The process of randomly inserting cloaking elements into a braid can be iterated and we intro-
duce the following definition:

Definition 1.5 Given an element β ∈ BN , the output of κ iterations of randomly inserting cloaking
elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).

5 Notation for cryptographic protocols

Let S be a set.

〈S〉 denotes a unique encoding of S as a binary string.

s
$←− S denotes the operation of randomly choosing s ∈ S.
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Let A( ∗ ; ρ) be a randomized algorithm with randomness based on a coin ρ.

A(y1, . . . yq; ρ) denotes the output of the algorithm A on inputs y1, . . . yq and coin ρ.

z
$←− A(y1, . . . yq) means choose ρ at random and let z = A(y1, . . . yq; ρ).

Let β ∈ BN .

P(β) :=
(

IdN , Id
SN

)

⋆ β.

where IdN is the N ×N identity matrix and Id
SN

is the identity permutation in SN .

The security of WalnutDSA is based on the following highly non-linear problem that we perceive
to be computationally infeasible for sufficiently large key and parameter sizes.

The REM Problem (Reversing E-Multiplication is hard) Consider the braid group BN and
symmetric group SN with N ≥ 10. Let Fq be a finite field of q elements,and fix a set of non-zero
T -values {τ1, τ2, . . . , τN} in Fq. Given a pair (M,σ) ∈ (GL(N,Fq), SN ) where it is stipulated that

(M,σ) = P(β)

for some unknown braid β ∈ BN (with sufficiently long BKL normal form), then it is infeasible to
determine a braid β′ such that (M,σ) = P(β′).

Support for the hardness of reversing E-Multiplication can be found in [37] which studies the
security of Zémor’s [48] hash function h : {0, 1}∗ → SL2(Fq), with the property that h(u v) =
h(u)h(v), where h(0), h(1) are fixed matrices in SL2(Fq) and uv denotes concatenation of the
bits u and v. For example a bit string {0, 1, 1, 0, 1} will hash to h(0)h(1)h(1)h(0)h(1). Zémor’s
hash function has not been broken since its inception in 1991. In [37] it is shown that feasible
cryptanalysis for bit strings of length 256 can only be applied for very special instances of h.
Now E-Multiplication, though much more complex, is structurally similar to a Zémor type scheme
involving a large finite number of fixed matrices in SL2(Fq) instead of just two matrices h(0), h(1).
This serves as an additional basis for the assertion that E-Multiplication is a one-way function.

6 Key Generation for WalnutDSA

WalnutDSA allows a signer with a fixed private-/public-key pair to create a digital signature asso-
ciated with a given message that can be validated by anyone who knows the public-key of the signer
and the verification protocol. We now describe the algorithms for private-/public-key generation.

A central authority generates the system wide parameters denoted, par, via a parameter gen-

eration algorithm, denoted Pg, where par
$←− Pg. A signer S generates its own public and private

key pair, denoted (Pub(S), Priv(S)), via a key generation algorithm denoted Kg. In other words,

(Pub(S), Priv(S))
$←− Kg(par).

Public System Wide Parameters (par):

• An integer N ≥ 10 and associated braid group BN .

• An integer κ > 1 which is chosen to meet the security level. The signature will utilize κ
concealed cloaking elements.
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• A rewriting algorithmR : BN → BN which uses the relations of the group to render a rewritten
word unrecognizable. Example of such rewriting algorithms can be found in [12] or [16].

• A finite field Fq.

• Two integers 1 < a < b < N.

• T-values = {τ1, τ2, . . . , τN}, where each τi is an invertible element in Fq, and τa · τb = −1.

Signer’s Private Key:

The Signer’s Private Key consists of two random, freely-reduced braids:

• Priv(S) = (w,w′) ∈ BN ×BN .

Here the three braids w, w′ and w′ · w are not in the pure braid group. We assume w,w′ are
sufficiently long to provide the necessary resistance to brute-force searches for the desired security
level (see §11).

Signer’s Public Key:

The Signer’s Public Key consists of two matrix and permutation pairs, each of which is generated
from the Private Keys of the signer via E-Multiplication:

• Pub(S) =
(

P(w), P(w′)
)

.

7 Message Encoder Algorithm

In order to generate a secure signature and prevent certain types of merging attacks, one must
carefully convert the message to be signed into a braid word. Let m ∈ {0, 1}∗ be a message. Let
H : {0, 1}∗ → {0, 1}2η denote a cryptographically secure 2η-bit hash function for η ≥ 1. We now
present an injective encoding function E : {0, 1}2η → HN , where HN is a free subgroup of the pure
braid group generated by the N −1 braids defined below. We recall that a group is said to be freely
generated by a subset of elements provided a reduced element (a word where the subwords x · x−1,
and x−1 · x do not appear for any generator x) is never the identity.

For WalnutDSA it is necessary for the permutation of the encoded message to be trivial, i.e.,
the encoded message must be a pure braid. In order to ensure that no two messages will be encoded
in the same way, we require the message be encoded as unique nontrivial, reduced elements in
a free subgroup of the pure braid group. This requirement ensures that distinct messages will
result in distinct encodings. The encoding algorithm we present is based on the following classical
observation: the collection of pure braids given by

g(N−1),N = b2N−1 (7)

g(N−2),N = bN−1 · b2N−2 · b−1
N−1

g(N−3),N = bN−1bN−2 · b2N−3 · b−1
N−2b

−1
N−1

g(N−4),N = bN−1bN−2bN−3 · b2N−4 · b−1
N−3b

−1
N−2b

−1
N−1

...

g1,N = bN−1bN−2 · · · b2 · b21 · b−1
2 b−1

3 · · · b−1
N−1,
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generate a free subgroup HN ≤ BN [11]. For simplicity, we will write gi for gi,N when N is clear
from the context.

Message Encoder Algorithm: We determine a braid E(H(m)) ∈ BN as follows. The hashed
message H(m) consists of η 2-bit blocks. Fix a collection S of η subsets Sη, where each Sη consists
of a four-tuple of distinct generators taken from (7):

Sk = (gk1
, gk2

, gk3
, gk4

).

Each 2-bit block of H(m) determines a unique element of the corresponding tuple Sk, and the
output E(H(m)) is then the product of these generators of HN , taken in order over the blocks of
H(m). It is clear that this map is injective, since the gi generate a free subgroup, and since the
knowledge of E(H(m)) and the sets Sk allows one to recover H(m).

An astute reader will note that without the presence of the hash function, the encoding function
E would be homomorphic, i.e., E(m)E(m′) = E(mm′) for all messages m,m′. However, this is not
a problem since the input to the encoder is the digest of a message. Indeed, for a good cryptographic
hash function H, we know that H(m)H(m′) will never equal H(mm′). We also know it is unlikely
to find two classes of hash functions H1, H2 such that the output size of H1 is half the output size
of H2, and then to further find three messages m, m′, and m′′ such that H1(m) H1(m

′) results in
the same output1 as H2(m

′′), and also get a signer to sign both messages m and m′ using H1. We
also note that including a hash algorithm identifier in the message after it is hashed would prevent
this attack.

8 Signature Generation and Verification

Fix a hash function H as in §7. To sign a message m ∈ {0, 1}∗ the Signer performs the following
steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 where

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).
− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ(v1 · w−1 · v · E(H(m)) · w′ · v2)
)

., which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

1 For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need
to find two messages m and m

′ that are preimages to the halves of H2 of the desired forgery and then
get the signer to use H1 and sign both m and m

′. E.g. the attacker would need to take his or her desired
forged message, hash it using SHA2-256, find two preimages with MD5, get the signer to sign those MD5
preimages, and only then can he or she compose a message that would verify with SHA2-256.
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As addressed earlier, the cloaking elements v, v1, v2 ∈ Bn disappear when the signature is E-
Multiplied by the public key Pub(S), and the insertion of κ concealed cloaking elements will, by
construction, not impact the verification .

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

, (8)

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication.

5. Reject signatures that are longer than 214 Artin generators2.

The signature is valid if and only if (4), (5) holds.

9 Security Proof for WalnutDSA-I

In this section we will provide security proofs for a Schnorr/Brickell type model (see [31], [15])
of WalnutDSA, denoted WalnutDSA-I which is defined below. Specifically, we will prove that
WalnutDSA-I is existentially unforgeable under adaptive chosen-message attacks (EUF-CMA-secure)
in the random oracle model assuming a Forger has the ability to forge valid signatures of a specified
type with non-negligible probability.

Keeping with the notation from §4, we define the set Cloak as follows:

Cloak :=
{

(v, v1, v2)
∣

∣

∣ v, v1, v2 ∈ BN , v ∈ CloakId, v1 ∈ CloakP(w), v2 ∈ CloakP(w′)

}

,

where Id= (IdN , IdSN
).

The system wide parameters and key generation algorithm for WalnutDSA-I is the same as for
WalnutDSA and is given by

par
$←− Pg,

(Pub(S),Priv(S))
$←− Kg(par).

In WalnutDSA-I the signature of a message m ∈ {0, 1}∗ for the public Pub(S) is based on two
hash functions H,G : {0, 1}∗ → {0, 1}2κ and is generated by the following protocol.

1. (v, v1, v2)
$←− Cloak, V =

〈

(v, v1, v2)
〉

.

2 In practice 128-bit signatures average around 211 generators, but different rewriting techniques could
extend that. Because the braid group is infinite there are many ways to represent the same signature,
however all those ways are well beyond the 214 limit.
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2. Compute E
(

H
(

m ||G (V )
) )

.

3. Compute Sig = R
(

κ(v1 w
−1v · E

(

H
(

m ||G (V )
) )

· w′ v2)
)

. The final signature is denoted
(

m,H(m), G(V ), Sig
)

.

To validate the signature, one checks whether

Matrix
(

P(w) ⋆ Sig
) ?

= Matrix
(

P
(

E
(

H
(

m ||G (V )
) ))

)

·Matrix
(

P(w′)
)

.

Note that all WalnutDSA-I signatures on a message m created by an honest signer lie in the
double coset

DC
m,V,H,G

:=
{

R
(

X ·
[

P
(

E
(

H
(

m ||G (V )
) )) ]

· Y
) ∣

∣

∣ X,Y ∈ BN

}

, (9)

where X,Y depend only on the cloaking elements V chosen by the honest signer and do not depend
on the message m or the hash function H,G. Not every valid signature needs to be of this form.
This is due to the fact that the braid group BN is non-commutative and E-Multiplication is a highly
randomized function.

EUF-CMA Security Proof for WalnutDSA-I

We now assume the existence of a forger, denoted F , that on input Pub(S) and message m, can
produce a valid WalnutDSA-I signature lying in the double coset DC

m,V,H,G
with non-negligible

probability. The assumption that the Forger only can produce possible signatures lying in DC
m,V,H,G

is restrictive. As pointed out by Koblitz and Menezes [31], although it is a common approach in
modern security proofs to restrict the capabilities of the adversary, it is important to show that
certain classes of attacks can be ruled out.

More precisely, we define F to be a randomized algorithm which can make hash queries to a
random oracle and signature queries to a simulator that does not know Priv(S) but can simulate
an honest signer.

Hash Query: Let Oρ denote a random oracle, depending on a coin ρ, which evaluates the hash of a
string str ∈ {0, 1}∗. A hash query is just a string str. The response to the query is the hash of str,
provided by Oρ.

Signature Query: A signature query is the message and the public key of the signer. The response
to the query is a valid signature.

The Forger F : Consider WalnutDSA-I with system wide parameters and public/private key pair
specified by

par
$←− Pg, (Pub(S),Priv(S))

$←− Kg(par).

We assume the hash functionH is fixed and multi-collision-resistant while the hash function G = Gρ

is given by the oracle Oρ which depends on a coin ρ.

The Forger F is defined to be a randomized algorithm that on input a message m ∈ {0, 1}∗,
a signer’s public key Pub(S), and a coin ρ, outputs a 4-tuple

(

m,h, gρ, s
)

, where h = H(m) and

gρ = Gρ(V ) and V
$←− Cloak, s

$←− DC
m,V,H,G

. It is assumed that the probability that
(

m,h, gρ, s
)

is a valid WalnutDSA-I signature is non-negligible.

12



Lemma 9.1 (Forking Lemma) Let F be run twice with inputs,

(m,Pub(S), ρ), (m,Pub(S), ρ′),

then with non-negligible probability, F will output two valid signatures
(

m,h, gρ, s
)

,
(

m,h, gρ′ , s′
)

,

such that gρ 6= gρ′ .

Proof. This follows from [40], [6].

The forking lemma 9.1 can be used to show that under an EUF-CMA attack it is possible for F to
solve the REM problem (reversing E-multiplication is hard) with non-negligible probability provided
there is a polynomial time solution to the conjugacy search problem CSP which is the problem of
findingX ∈ BN assuming that w ∈ BN andXwX−1 ∈ BN are known. This is conjectured to be true
by many people and it has been experimentally shown that if X is chosen according to a standard
uniform distribution then X can be found with high probability in polynomial time [19], [21].

Theorem 9.2 Assume that CSP can be solved in polynomial time. Further, assume that two
WalnutDSA-I signatures

(

m,H(m), Gρ(V ), s
)

,
(

m,H(m), Gρ′(V ), s′
)

,

with Gρ(V ) 6= Gρ′(V ) are known to an adversary. Then it is possible for the adversary to solve the
REM problem in polynomial time with non-negligible probability.

Proof. Let

s = R
(

X ·
(

E
(

H
(

m ||Gρ (V )
) ))

· Y
)

= X ·
(

E
(

H
(

m ||Gρ (V )
) ))

· Y,

s′ = R
(

X ·
(

E
(

H
(

m ||Gρ′ (V )
) ))

· Y
)

= X ·
(

E
(

H
(

m ||Gρ′ (V )
) ))

· Y,

be the two known signatures where “=” means equality in the braid group, and where X,Y depend
only on the choice of the cloaking elements V . It follows that

s · (s′)−1 = X ·
[

(

E
(

H
(

m ||Gρ (V )
) ))

·
(

E
(

H
(

m ||Gρ′ (V )
) ))−1

]

·X−1.

By our assumptions, it is possible to solve for X, and then also solve for Y . Note that X has the
property that P(w) = (IdN , IdSN

)⋆X, and, hence, E-Multiplication has been reversed in this case.

Strong existential forgery

Strong existential forgery is the situation when an attacker is able to forge a second signature of a
given message that is different from a previously obtained signature of the same message.

WalnutDSA as presented above is, a priori, subject to strong existential forgery. The signature
of a messageM is of the form

Sig = R
(

κ(v1 · w−1 · v · E(H(m)) · w′ · v2)
)

. (10)

Clearly an attacker could augment the above signature by multiplying it (on the right) by an
additional cloaking element, thus obtaining a second signature of the same message. This does
not undermine WalnutDSA security if we require a forgery to be a message that was never signed
previously because of the non-repudiation property discussed previously.
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10 Security Discussion

To facilitate the accuracy of the discussion below we recall the following definition of security level:

Definition 10.1 (Security Level): A secret is said to have security level k over a finite field F if
the best known attack for obtaining the secret involves running an algorithm that requires at least
2k elementary operations (addition, subtraction, multiplication, division) in the finite field F.

Linear Algebraic, Group Theoretic, and Probabilistic Attacks

Neither the attack of Ben-Zvi–Blackburn–Tsaban [7], based on ideas in [29], or the invalid public
key attack of Blackburn–Robshaw [13] (also [1]) target the underlying hard problems on which
WalnutDSA is based. This is because the signature is a braid (a cloaked conjugate) and the public
key is coming from E-Multiplication of the identity element with a braid that has very little algebraic
structure.

The more recent work of Hart–Kim–Micheli–Perez–Petit–Quek [25] proposes a practical univer-
sal forgery attack on WalnutDSA in the special case where the two private braids w and w′ are
equal. The attack proceeds by taking a collection of signed messages (Mi, si) indexed by a finite set
I and using them to produce a valid signature for a new message M . The main idea underlying the

attack is finding a short expression in GL(N,Fq) for the element h = Matrix
(

P(E(M))
)

in terms

of elements gi := Matrix
(

P(E(Mi)
)

. Namely, one seeks an expression of the form

h =

l
∏

j=1

g
ǫij
ij

, ij ∈ I, ǫij ∈ {±1}. (11)

Then the braid

s =

l
∏

j=1

s
ǫij
ij

will be a valid signature for M .

Thus the attack relies on both the equality of w and w′ and on finding factorizations in non-
abelian groups: the former implies that one can appropriately multiply the signatures si together
in the final step to produce a signature for M , and the latter implies that one can find the correct
product of the si. This attack fails if w 6= w′, since one cannot multiply the si together to produce a
valid signature. It is observed in [8] that it is possible to modify the attack of [25] so that it reduces
to the case w = w′ with forged signatures that are expected to be twice as long as forged signatures
produced by the attack of [25]. The authors of [25] point out that the forged signatures produced by
their method (in the case w = w′) are many orders of magnitude longer than the actual signatures
produced by WalnutDSA, so the attack is easily thwarted by rejecting long signatures. Further,
they also point out that their attack fails with moderate increases in the parameters N, q.

Four additional attacks have appeared recently. A Pollard-Rho type method taken by [14] uses
the estimate for the number of braids of a given length in Artin generators (see §11), and assumes the
output of E-multiplication is uniformly distributed, to give an exponential algorithm that recovers
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an equivalent private key of a signature from the corresponding public key. Specifically, [14] shows
that to reach a k-bit security level:

qN(N−3)−1 > 22k (12)

By choosing N ≥ 10 (and q = 32 or 256) this approach becomes ineffective.

Further, the encoding method specified in §7 ensures that the vector space consisting of the
matrix component of the signers’ public keys has a sufficiently large dimension. It was observed
in [9] that the encoding must ensure this property to maintain the specified security level, specifically,
to reach a k-bit security level:

qdimension > 22k (13)

As an example of an encoding that yields sufficient security in the case N = 12, let S be the periodic
sequence of tuples {(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), (3, 5, 7, 9),
(4, 6, 8, 10), . . . }. One can check that this dimension is 122, so using q = 32 or 256 results in
sufficiently large spaces. For the case of N = 10, S can be the sequence {(3, 5, 7, 9), (2, 4, 6, 8),
(1, 3, 5, 7), (2, 4, 6, 8), . . . } which results in a dimension of 82.

An alternate exponential factoring attack [10] found a more efficient way to find alternate
private keys that produce short signatures. The attack was mounted against the WalnutDSA NIST
submission, which uses an older version of WalnutDSA where τ1 = τ2 = 1, and suggested parameters
N = 8, q = 32 for 128-bit security and N = 8, q = 256 for 256-bit security. Specifically, the attack
in [10] showed that those parameters were too small. Against that older version of WalnutDSA
using those parameters the attack runs in qN−5/2 time although they claim it can be reduced to
q(N/2)−1. While the former runtime was verified, the latter runtime was never observed using the
attack code made available.

Against this version of WalnutDSA, where τaτb = −1, their running time is much higher, adding
at least a factor of

√
q
√
x to their runtime, where x is a parameter in their attack (they set x = 60

for N = 8, it is unclear what it needs to be for N = 10). This results in an (unverified) search time
of at least √

x q(N−1)/2 (14)

Lastly, a method for searching for cloaking elements of known permutations has been posited by
Kotov–Menshov–Ushakov [32]. It is the presence of κ concealed cloaking elements that blocks this
attack. In general, knowing that κ concealed cloaking elements have been placed in a know braid,
it would require (N !)κ searches to find them and thus, taking the lack of possible birthday attacks
into account, to insure k-bit security we would require

(N !)κ > 2k (15)

and hence
κ > Security Level/ log2(N !).

We have explored possible birthday attacks and have ruled out obvious ways to use a birthday
attack to discover all the concealed cloaking elements. Indeed, multiple cloaking elements could use
the same permutation but each would still need to individually be discovered. Without access to a
birthday attack, in the case of N = 10, and a security level of 128 we can comfortably take κ = 6
(which results in 2130.74). Likewise, when N = 10 and the security level is 256, taking κ = 12 is
sufficient (resulting in 2261.49).
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11 Brute Force Attacks

Brute force security level for each Private Key:

In order to choose private keys of security level = SL that defeat a brute force attack, we need to
analyze the set of braids in BN of a given length ℓ and try to assess how large this set is. Being as
conservative as possible, at a minimum, the brute force security level for the signer’s private key
pair will be the brute force security level of a single private key. Letting WN (ℓ) denote the number
of distinct braid words of length ℓ in BN , the most basic estimate for WN (ℓ) is given by

WN (ℓ) ≤ (2(n− 1))
ℓ
.

This trivial bound does not take into account the fact that the braid relations, particularly the
commuting relations, force many expressions to coincide. Furthermore, the commuting relations
bi bj = bj bi |i − j| ≥ 2, allow us to write products of generators far enough apart in weighted
form, i.e., given bi bj where |i− j| ≥ 2, we can assume i > j.

To start analyzing the situation we work in B5, we enumerate words of length 2 starting with
a given generator: b1 b±1

2 , b1 b1, b2 b±1
3 , b2 b2, b2 b±1

1 , b3 b±1
4 , b3 b3, b3 b±1

2 , b3 b±1
1 ,

b4 b4, b4 b±1
3 , b4 b±1

2 , b4 b±1
1 . Words of length 2 starting with inverses of the generators are of

course similar, and thus the number of distinct words of length ℓ = 2 in B5 taking the commuting
relations into account is 44 < (2(5− 1))

2
= 64. In order to obtain a good bound for WN (ℓ), which

eliminates the redundancy arising from the commuting elements, we require the following function:

wk(k
′) =











1 k = k′,

2 k 6= k′ and k′ < N − 1,

0 k′ > N − 1.

Using this notation, the number of words of length 2 in BN is given by

WN (2) = 2

N−1
∑

k1=1

k1+1
∑

k2=1

wk1
(k2),

where the equality holds because the remaining braid relations are longer than length 2.

Moving to words of length ℓ, we have

WN (ℓ) ≤ 2

N−1
∑

k1=1

k1+1
∑

k2=1

wk1
(k2)

k2+1
∑

k3=1

wk2
(k3) · · ·

kℓ−1+1
∑

kℓ=1

wkℓ−1
(kℓ).

This is just an upper bound on the number of braids of length ℓ but it does represent what
an attacker would have to do to be certain that all possibilities are checked. At present, the above
method gives the best protocol known for generating braid words of length ℓ with the least over
counting. There is no closed formula for the number of distinct braids of length ℓ; in fact the problem
is NP hard [39].
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Hence we are reduced to finding a lower bound for the right hand side above, which can be done
as follows:

2
N−1
∑

k1=1

k1+1
∑

k2=1

wk1
(k2)

k2+1
∑

k3=1

wk2
(k3) · · ·

kℓ−1+1
∑

kℓ=1

wkℓ−1
(kℓ) ≥ 2ℓ

N−1
∑

k1=1

k1+1
∑

k2=1
k2 6=k1

k2+1
∑

k3=1
k3 6=k2

· · ·
kℓ−1+1
∑

kℓ=1
kℓ 6=k1

1

= 2ℓ
N−1
∑

k1=1

k1
∑

k2=1

k2
∑

k3=1

· · ·
kℓ−1
∑

kℓ=1

1 =
2ℓ

ℓ
· (N − 1)

(

ℓ− 2 +N
N − 1

)

,

where
(

ℓ−2+N
N−1

)

denotes the binomial symbol.
Thus, in order to defeat the brute force search at a security level = SL, the signer’s private key

must be a braid word of length ℓ which satisfies:

SL ≥ log2

(

2ℓ

ℓ
· (N − 1)

(

ℓ− 2 +N
N − 1

))

.

Next, we may use Stirling’s asymptotic formula for the Gamma function to obtain a lower bound

for 2ℓ

ℓ · (N − 1)

(

ℓ− 2 +N
N − 1

)

. The final result is

SL > log2

(

(2ℓ/ℓ) · ℓ(N−1))

(N − 1)!

)

for fixed N as ℓ → ∞. To find the length ℓ associated to a given security level SL, one may apply

Newton’s method to solve the equation: ℓ+ (N − 2) log2(ℓ) = SL+ log2

(

(N − 1)!
)

.

Search space of each Public Key Pub(S):

Recall that the signer’s public key is given by the pair: Pub(S) =
(

P(w),P(w′)
)

. When this is
evaluated with the specified choices of BN and Fq it results in two N × N matrices each with q
possible elements for every entry. The last row will consist of zeros with the exception of the final
entry on the bottom right. Thus an estimate for the number of possible matrices appearing in public
keys is given by

qN(N−1)+1 = qN
2
−N+1.

The search space for all such matrices is again the square of this lower bound. At present, the only
known way to determine Priv(S) from Pub(S) is a brute-force search.

Quantum Resistance

We now quickly explore the quantum resistance of WalnutDSA. As shown in §10, the security of
WalnutDSA is based on the hard problem of reversing E-Multiplication. The underlying math is
intimately tied to the infinite non-abelian braid group that is not directly connected to any finite
abelian group. We will show that this lends strong credibility for the choice of WalnutDSA as a
viable post-quantum digital signature protocol.
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The Hidden Subgroup Problem HSP on a group G asks to find an unknown subgroup H using
calls to a known function on G which is constant on the cosets of G/H and takes different values
on distinct cosets. Shor’s [42] quantum attack breaking RSA and other public key protocols such as
ECC are essentially equivalent to the fact that there is a successful quantum attack (the quantum
Fourier transform QFT) on the HSP for finite cyclic and other finite abelian groups (see [33]).

There are at least two possible ways to try to use quantum methods for HSP to attack the
underlying algebra: (i) one can try to use HSP in the braid group itself, for instance as an approach
to CCSP, or (ii) one can try to use HSP in the general linear group GL(N,Fq), for instance to
identify the image of BN under E-Multiplication, or to identify the images of other subroups, such
as the pure braids.

Both possibilities are far beyond what is currently known for HSP. First of all, the braid group
is infinite, and no progress has been made for HSP for infinite groups. Moreover, every non-trivial
element in BN has infinite order, and in particular the braid group does not contain any non-
trivial finite subgroups. Hence there does not seem to be any viable way at present to work with
quantum solutions for HSP in BN . Second, some progress has been made in quantum solutions
to HSP for certain nonabelian finite groups, such as semidirect products of abelian groups, or
groups with the property that all subgroups are normal. However progress for groups with large
degree representations such as GL(N,Fq) and other finite groups of Lie type has been more limited.
Currently the best one knows how to do is to construct subexponential circuits to compute the QFT
on such groups [35]. This does not give an efficient algorithm to apply quantum attacks to such
groups.

Given an element

β = bǫ1i1 bǫ2i2 · · · b
ǫk
ik
∈ BN , (16)

where ij ∈ {1, . . . , N − 1}, and ǫj ∈ {±1}, we can define a function f : BN → GL(N,Fq) where
f(β) is given by the E-Multiplication (1, 1) ⋆ (β, σβ) and σβ is the permutation associated to β.
Now E-Multiplication is a highly non-linear operation. As the length k of the word β increases, the
complexity of the Laurent polynomials occurring in the E-Multiplication defining f(β) increases
exponentially. It does not seem to be possible that the function f exhibits any type of simple
periodicity, so it is very unlikely that inverting f can be achieved with a polynomial quantum
algorithm.

Finally, we consider Grover’s quantum search algorithm [22] which can find an element in an
unordered N element set in time O

(√
N
)

. Grover’s quantum search algorithm can be used to find
the private key in a cryptosystem with a square root speed-up in running time. Basically, this cuts
the security in half and can be defeated by doubling the key size. This is where E-Multiplication
shines. When doubling the key size one only doubles the amount of work as opposed to RSA, ECC,
etc. where the amount of work is quadrupled. Note that almost all of the running time of signature
verification in WalnutDSA is taken by repeated E-Multiplications.

12 Size and Performance Characteristics

To test WalnutDSA we wrote key and signature generation and validation software in C (and on
some platforms implemented part of the verification engine in assembly). We ran the signature
generation on a Thinkpad T470p laptop with an Intel i7-7820HQ CPU @ 2.90GHz running Fedora
Linux to generate 500 keypairs, and for each key generated 100 random 256-bit messages and the
resulting signatures. For the signature rewriting we used a combination of the Birman–Ko–Lee
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(BKL) [12] and Dehornoy [16] algorithms to obscure the braids and shorten them to reasonable
lengths.

For our testing we settled on the parameters:

• N = 10
• q = M31 = 231 − 1
• κ = 6
• ℓ = 124

which yields a private key and signature security level of at least 2128 against all known attacks,
with a public keyspace of approximately 22821 possible public keys. These parameters also assure
sufficient security based on Equations 12, 13, 15, and 14, yielding 22139, 22542 > 2256, 2130 > 2128,
and at least 2142.4 (assuming that the attack’s parameter x remains at 60).

Each of the public keys are always a fixed size. They need to include the T-Values, both Matrices,
and Permutation which requires

N log2(q) + 2(N(N − 1) + 1) log2(q) +N log2(N) = 310 + 2 ∗ 2821 + 50 = 6002 bits.

Private keys and signatures, however, are variable length. Recall that each private key has two
braids. In the 500 private keys (1000 braids), the braids varied in length from 90 generators to 124
generators, with a mean of 110.24 and a standard deviation of 5.03. With our encoding, this results
in a private key storage of 900 to 1240 bits; the maximum storage is 1240 bits.

Using those 500 keys we generated 50,000 signatures using random input messages of 256 bits
(simulating SHA256 hash output), and then used BKL and Dehornoy as the rewriting methods. Of
these 50,000 signatures, their lengths varied from 1158 to 3306 generators, with a mean of 2037.21
and a standard deviation of 286.85. These signatures also require 5 bits per generator, which results
in signatures of length of 5790 to 16530 bits (with an average of 10186.05 bits).

For a 256-bit security level we settled on N = 10, q = M61 = 261−1, κ = 12, and ℓ = 275 which
results in private keys that range from 217 to 267 generators, with a mean of 244.52, and signatures
that range from 2420 to 5704 generators, with a mean of 3856.16.

Signature Validation

Where WalnutDSA shines is in signature validation, because E-Multiplication is rapidly computable
even in the tiniest of environments. To prove its viability we implemented the WalnutDSA signature
verification routines on several platforms: an Intel x86 64 (the NIST PQC target platform), an ARM
Cortex R5, an ARM Cortex M3, an ARM Cortex M4, an ARM Cortex M0, a RISC-V FE10, and
a Renesas RL78.

To provide a common testing platform, we chose a single message with an average-length sig-
nature of 2038 generators, which encodes into 1274 bytes. Then we built our code on the various
platforms and measured the time to validate the signature. On some platforms we also tested 256-bit
signatures where we tested an average length of 3856 generators (2410 bytes).

The Intel x86 64 platform is one of the most widely used in the world for laptops and servers.
The family has dozens of different processors to choose from with varying sets of extensions. For
our testing we chose an Intel Xeon X5355 at 2.66GHz. On that platform a 128-bit signature verifies
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in approximately 200,000 cycles, and a 256-bit signature verifies in approximately 500,000 cycles.
On the same platform we ran “openssl speed ecdsap256” to compare the speeds, which resulted
in 2283.1 verifications per second, or 0.438ms each, using a highly-optimized assembly routine.
The simple WalnutDSA implementation is still 5.8x faster. On the same platform, ECDSA p521
performs 598.4 verifies per second (1.671ms each), which makes WalnutDSA 9x faster at a 256-bit
security level.

The ARM Cortex-R5 is a middle-of-the-road embedded processor used for larger embedded sys-
tems. We tested on a TI TMS570LC4357ZWT running at 200MHz with plenty of RAM and ROM.
On this platform we implemented a combination of C and Assembly to leverage the capabilities
of the platform, and compiled using the IAR ANSI C/C++ Compiler, version 8.20.1.14183/W32
for ARM. The verification code compiled down to 2024 bytes and required 1060 bytes of RAM.
Signature verification of an average length signature required 483,210 cycles, which works out to
2.4ms. On this same platform, a worst-case signature of 3350 generators required only 706,842 cycles
(3.534ms) to verify.

The ARM Cortex-M3 is a much smaller 32-bit embedded microcontroller. We utilitized an
STM32F103 (NUCLEO-F103RB board) running at 64MHz using the built-in Atollic TrueSTUDIO
9.0.1 with GCC version: (GNU Tools for ARM Embedded Processors (Build 17.03)) 6.3.1 20170215
(release) [ARM/embedded-6-branch revision 245512]. On this platform we implementedWalnutDSA
purely in C without any assembly language optimizations. The verification engine compiled down
to 4568 bytes of ROM and executed in only 1116 bytes of RAM. At 128-bit security, an average
signature required 1,001,829 cycles to verify (15.67ms). Compare this result to ECC, where [46]
showed a full assembly language implementation that required 7168 bytes of ROM and 540 bytes
of RAM, but still required 233ms at 48MHz to perform a point multiplication (recall that ECDSA
verification requires two). ARM itself produced a report [44] where they measured an ECDSA
verification on an LPC1768 in 458ms. With these results, WalnutDSA in C is more than 11x faster
than the assembly implementation, and 21.9x faster than ARM’s speed reports (when normalized
to the same clock speed).

Further, on the M3 we compiled two different ECDSA implementations, micro-ecc and libECC.
The libECC implementation required 255,508,762 cycles to verify a SECP256 signature, and 1,155,388,938
cycles to verify SECP521! On the other hand, micro-ecc required only 17,208,994 cycles to verify
P256 (358ms at 48MHz), however it does not have an implementation of P521 that could be used
to compare against WalnutDSA.

The ARM Cortex-M4 is a step up from the M3. We built a C-only implementation of WalnutDSA
and ECDSA and measured the signature validation time on an STMicroelectronics STM32F4-
DISCOVERY evaluation board running at 168MGz. When we compiled WalnutDSA with -O3 op-
timization, validating a WalnutDSA signature at 128-bit security required 817,545 cycles (4.866ms)
using 4512 bytes of ROM and 1116 bytes of RAM. Using optimization level -O2 increased the time
to 1,092,750 cycles (6.504ms) but decreased the code size to 1692 bytes of ROM (RAM was unaf-
fected). ECDSA at the same security level required 22,184,817 cycles (132ms, leveraging the M4
floating-point features). This yields a 27.1x speed improvement of WalnutDSA over ECDSA. At a
256-bit security level, WalnutDSA required 11,230,464 cycles at -O3 (16473/3764 ROM/RAM) and
10,326,739 cycles and 2592/2280 ROM/RAM at -O2.

The ARM Cortex-M0 is the smallest of the ARM processors. We tested on an Infineon XMC1100
running at 32MHz. WalnutDSA (C-only) compiled down to 4522 bytes of ROM and ran in 1156
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bytes of RAM. A 128-bit signature validated in 3,262,152 cycles (101.6ms). On the same platform,
microECC curve secp256r1 in only C compiled at -O3 required 12592 bytes of ROM, required 1228
bytes of RAM, and validated a signature in 56,559,519 cycles (1760ms). This is an 17.3x speed
improvement of WalnutDSA over ECC. One reason for the lower improvement is the lack of a
32-bit multiplier.

RISC-V is an open-architecture ISA platform with a growing cadre of support from chip man-
ufacturers. For our tests we picked a SiFive FE310 32-bit platform running at 256MHz. On this
platform we implemented purely in C an optimized for speed. An average 128-bit signature re-
quired 2,207,010 cycles to verify (8.62ms) and an average 256-bit signature required 8,389,555 cycles
(32.81ms). On this same platform an ECC P256 signature required 43,559,147 cycles (179ms) for a
gain of 19.7x; P521 was not supported.

The Renesas RL78 is a 16-bit microcontroller that runs at 32MHz. On this platform we imple-
mented WalnutDSA using C and also using assembly language. We tuned the compiler to optimize
the code for speed, which compiled WalnutDSA into 3,890 bytes; runtime required 1,116 bytes of
RAM. The C implementation of WalnutDSA verified a signature in 5,744,917 cycles, and the assem-
bly optiomizations reduced the verification time to only 4,215,741 cycles (131.7ms). On the same
platform, ECC P-256 required 13,544 bytes of ROM, 1,230 bytes of RAM, and took 125,565,670
cycles to verify a signature, which shows a 29.8x speedup of WalnutDSA over ECDSA.

13 Conclusion

This paper introduced WalnutDSA, a quantum-resistant Group Theoretic public-key signature
scheme based on the E-Multiplication one-way function. Key generation is accomplished by pro-
ducing random T-values and a random braid of a specific form, and then using E-Multiplication to
compute the public key. Signature generation involves creating the cloaking elements, building the
signature braid, and then running one of the many known braid rewriting algorithms to obscure
the form and hide the private key.

At a 128-bit security level the public key is 1438 bits and the private key length ranges from
900 to 1240 bits long (with a maximum theoretical length of 1240 bits). The signatures, after using
BKL and Dehornoy braid rewriting techniques, range from 5790 to 16530 bits in length.

In addition, WalnutDSA signature verification proves to be extremely fast, even on small, embed-
ded systems. Verification requires two sets of E-Multiplications, a matrix multiplication, and then
a matrix compare. Implementations of WalnutDSA outperformed ECDSA on all platforms tested.
Whereas on most platforms WalnutDSA showed an average speed increase of about 23x over an
equivalent ECDSA verification. Even on the 16-bit Renesas RL78 this performance improvement
was almost 30x.
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A Performance Matrix

Table 1. Raw WalnutDSA Performance Data (128-bit security level)

Platform Clock WalnutDSA ECDSA Gain
ROM RAM Cycles Time (ms) ROM RAM Cycles Time (ms) vs ECDSA

Intel x86 64 2.66G n/a n/a 200,000 0.075 n/a n/a n/a 0.438 5.8x
ARM Cortex R5 200 2024 1060 483,210 2.4 n/a n/a n/a n/a n/a
ARM Cortex M4 168 4512 1116 817,545 4.866 n/a n/a 22,184,817 132.05 27.1x
RISC-V FE310 256 n/a n/a 2,207,010 8.62 n/a n/a 43,559,147 179 19.7x
ARM Cortex M3 48 4568 1116 1,001,829 20.89 7168 540 n/a 233 11.2x
ARM Cortex M0 32 4524 1156 3,262,152 101.6 12592 1228 56,559,519 1760 17.3x

RL78 (16b) 32 3830 1116 4,215,741 131.7 13544 1230 125,565,670 3,924 29.8x

Note that a ’n/a’ in Table 1 implies that this data was not available.

B Example Data

The following sections detail an example of an actual WalnutDSA transaction using low-security
parameters. The example uses N = 10, q = 31, κ = 6, and ℓ = 124, which results in a security level
of approximately 225 against [10] and at least 2128 against all other known attacks.
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For ease of encoding here we represent each Artin generator as a positive or negative integer.
For example b1 is represented as 1, and b−1

4 is represented as −4.

Private/Public Key Pair

The private data:

• a = 1

• b = 2

• Priv(S): 4 9 -4 2 8 -9 2 -6 8 2 -5 -6 3 -2 -8 4 7 5 5 -8 9 -2 -9 -7 -2 -2 7 -3 2

4 1 5 5 5 4 6 8 6 -5 -7 -3 -6 -6 3 2 -6 -5 3 4 -2 -4 -7 -4 -3 6 9 -5 -3 9 -3 -4

-1 7 -2 -3 -2 7 5 -3 -1 -2 8 7 -9 4 9 -3 -9 1 2 -1 4 -9 -8 -1 -9 8 -1 -1 -6 5 -7

8 9 5 7 8 -4 2 -4 8 -4 9 -4 2 6 -5 7 -1 3

• Priv(S’): 5 9 -8 7 2 2 6 4 2 6 3 -4 -5 4 7 4 5 8 5 9 -4 6 -7 2 5 -4 -2 -2 -4 -3 6

8 -3 -5 -3 9 4 -5 9 9 9 7 -2 9 -4 3 5 4 3 4 3 9 -5 3 -1 -6 2 -7 -8 -4 -8 -3 7 1

4 -3 7 3 8 4 1 -9 3 -5 6 -2 -3 6 -8 -5 7 1 -7 -1 3 2 -6 -2 -9 -5 -4 -4 6 7 -5 -5

-5 9 2 2 -4 7 -2 -3 4 -6 4 3 -4 2

The public data:

• T-values: 14 11 16 9 12 20 30 8 11 3
• Pub(S):

– Matrix:
































4 22 11 8 21 12 11 6 21 21
2 2 21 19 24 9 9 13 6 5
10 4 19 28 17 10 8 23 11 19
22 14 23 3 7 3 15 20 28 18
26 16 5 4 23 7 21 2 0 29
15 24 26 21 23 4 29 12 28 20
17 14 19 5 6 4 6 22 25 11
12 19 28 9 17 15 3 20 15 19
8 18 3 15 11 14 21 8 2 5
0 0 0 0 0 0 0 0 0 1

































– Perm: 1 7 5 10 2 6 8 9 3 4

• Pub(S’):

– Matrix:
































26 27 0 21 0 30 14 15 0 0
3 11 21 16 9 10 15 21 5 26
11 15 12 11 6 13 11 20 16 30
0 11 29 20 0 19 14 29 18 7
17 11 19 13 23 20 10 20 24 22
5 25 15 22 8 15 23 28 15 6
4 26 7 13 20 12 1 10 15 5
25 12 28 11 13 3 20 27 10 19
28 7 9 21 13 25 23 3 25 10
0 0 0 0 0 0 0 0 0 1

































– Perm: 5 1 3 8 9 6 4 10 2 7

An astute observer will notice the last row is all zeros except for the last element. This is
expected and always happens with E-Multiplication.

Example Message

For the following signature and verfication examples we chose the following random 256-bit string
which we treat as the output of a 256-bit hash:
a3 c6 1b 0a b3 e4 62 ac 43 d3 4d 6b b3 af 5a b3

1e ee 6d 58 01 75 26 7b 0c f2 e6 2b d7 ea 9a a2
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Example Signature and Verification

For this example we parameterize the encoder using the set of generators specified in §9 from (13).
After free reduction, we find that the message becomes the following braid E(M):
9 8 7 7 7 6 6 6 5 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8 9 9 8 7 6 5 4 3 2 2 3 -4 -5 6 6 5 4

3 3 4 5 -6 -7 8 8 7 6 5 4 3 3 3 2 2 -3 -4 5 6 7 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6

-7 8 9 9 8 7 6 6 6 5 4 3 3 3 2 2 -3 -4 5 6 6 5 4 3 2 1 1 -2 -3 -4 -5 6 7 7 6 6 7 7

6 5 4 3 2 2 -3 -4 5 5 4 3 2 2 2 1 1 -2 -3 -4 -5 -6 -7 8 9 9 8 7 6 5 4 4 4 3 2 1 1 -2

-3 -4 -5 -6 -7 8 8 7 6 5 5 5 4 3 2 2 -3 -4 -5 -6 7 7 6 5 4 4 5 6 6 5 5 -6 -7 8 8 7

7 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8 8 7 7 7 6 6 7 8 8 7 6 5 5 5 4 4 5 6 7 8 8

7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8 8 7 6 5 4 3 3 4 -5 -6 7 7 6 6 -7 -8 9 9 8 7 6 6

7 7 6 6 6 5 5 6 7 7 6 5 4 4 5 5 4 4 5 5 4 3 2 2 3 3 2 2 2 1 1 -2 -3 4 5 -6 -7 8 8 7

6 5 4 3 3 4 4 3 3 -4 -5 6 6 5 4 3 3 -4 -5 6 6 5 5 -6 -7 8 8 7 6 5 5 -6 -7 8 8 7 6 5

4 3 3 3 2 2 -3 -4 -5 -6 7 7 6 5 4 3 2 2 -3 -4 -5 -6 -7 -8 9 9 8 8 8 7 6 5 4 3 2 1 1

-2 -3 -4 -5 6 -7 -8 9 9 8 7 6 6 6 5 4 3 3 -4 -5 6 6 5 4 3 3 -4 -5 6 6 5 5 -6 -7 8 9

9 8 7 6 5 4 4 4 3 3 -4 -5 -6 -7 8 9 9 8 7 6 6 6 5 5 6 7 7 6 5 4 4 5 6 7 7 6 6 6 5 4

3 2 1 1 -2 -3 -4 -5 6 -7 -8 -9

Notice the runs of various generators (i.e., 9 9 8 7 6 6 6 5 4 3 3 3 2 2). These occur be-
cause we select neighbor generators to be close together, and because cancellations occur upon
performing the free reduction.

After generating cloaking elements, we formed the raw signature (v1Priv(S)
−1

vE(M)Priv(S′)v2):
-4 -5 6 7 -8 -7 -6 -5 -4 -6 7 -8 -7 6 -5 6 7 8 -7 -6 5 8 -2 -3 4 -5 -6 -7 8 7 -8 -7

-2 3 -4 -5 -4 -3 2 -3 -4 -5 -4 3 1 2 3 -2 1 -4 5 6 -7 -6 -5 4 4 5 6 7 -8 9 -8 7 -6

5 8 8 8 8 -5 6 -7 8 -9 8 -7 -6 -5 -4 -4 5 6 7 -6 -5 4 -1 2 -3 -2 -1 -3 4 5 4 3 -2 3

4 5 4 -3 2 7 8 -7 -9 8 7 6 5 4 -3 2 -1 -2 1 3 4 -5 6 5 4 -3 7 7 7 7 3 -4 5 -6 7 6 5

4 6 -7 6 3 -4 -5 6 -5 4 3 -1 -2 -3 4 5 6 -7 8 -7 6 -5 -4 3 3 4 5 6 -7 -8 9 8 -7 6 -5

4 -3 -2 -2 -3 -4 3 -2 3 3 3 3 2 -3 4 3 2 2 3 -4 5 -6 7 -8 -9 8 7 -6 -5 -4 -3 -3 4 5

-6 7 -8 7 -6 -5 -4 3 2 1 -3 -4 5 -6 5 4 -3 -6 7 -6 -4 -5 -6 -7 6 -5 -5 -6 5 -4 -3 -1

2 1 -2 3 -4 -5 -6 -7 -8 9 -8 7 6 5 -4 3 2 -8 -5 6 7 -8 -7 -6 5 -6 7 8 -7 6 4 5 6 7

8 -7 -6 5 4 -3 1 -7 5 -6 -2 4 -9 4 -8 4 -2 4 -8 -7 -5 -9 -8 7 -5 6 1 1 -8 9 1 8 9 -4

1 -2 -1 9 3 -9 -4 9 -7 -8 2 1 3 -5 -7 2 3 2 -7 1 4 3 -9 3 5 -9 -6 3 4 7 4 2 -4 -3 5

6 -2 -3 6 6 3 7 5 -6 -8 -6 -4 -5 -5 -5 -1 -4 -2 3 -7 2 2 7 9 2 -9 8 -5 -5 -7 -4 8 2

-3 6 5 -2 -8 6 -2 9 -8 -2 4 -9 -4 3 4 -5 -4 -3 -6 4 5 6 -5 2 -3 4 5 -4 3 2 6 -7 8 -7

-6 3 -4 5 4 3 -6 7 -8 9 -8 7 6 -1 2 -3 -4 5 6 7 6 -5 4 3 -2 -1 8 8 8 8 1 2 -3 -4 5

-6 -7 -6 -5 4 3 -2 1 -6 -7 8 -9 8 -7 6 -3 -4 -5 4 -3 6 7 -8 7 -6 -2 -3 4 -5 -4 3 -2

5 -6 -5 -4 2 -3 -4 5 -6 7 -8 -7 6 5 -4 -3 -2 -1 -2 3 4 -3 -2 1 5 -6 7 6 -5 -5 -6 -7

-8 9 -8 7 -6 -5 -4 8 8 8 8 4 5 6 -7 8 -9 8 7 6 5 5 -6 -7 -6 -7 8 -7 -2 3 -2 4 -5 6

7 -6 5 4 3 -4 1 2 3 -4 -5 6 -7 -8 9 8 -7 6 5 -4 -3 -2 -1 6 6 6 6 1 2 3 4 -5 -6 7 -8

-9 8 7 -6 5 4 -3 -2 -1 4 -3 -4 -5 6 -7 -6 5 -4 2 -3 2 7 -8 7 6 6 -5 -1 2 3 -4 -3 2

1 2 3 4 -5 -6 7 8 -7 6 -5 4 3 -2 6 3 4 5 -4 -3 9 8 7 7 7 6 6 6 5 4 3 2 1 1 -2 -3 -4

-5 -6 -7 8 9 9 8 7 6 5 4 3 2 2 3 -4 -5 6 6 5 4 3 3 4 5 -6 -7 8 8 7 6 5 4 3 3 3 2 2

-3 -4 5 6 7 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8 9 9 8 7 6 6 6 5 4 3 3 3 2 2 -3

-4 5 6 6 5 4 3 2 1 1 -2 -3 -4 -5 6 7 7 6 6 7 7 6 5 4 3 2 2 -3 -4 5 5 4 3 2 2 2 1 1

-2 -3 -4 -5 -6 -7 8 9 9 8 7 6 5 4 4 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8 8 7 6 5 5 5 4 3 2

2 -3 -4 -5 -6 7 7 6 5 4 4 5 6 6 5 5 -6 -7 8 8 7 7 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6

-7 8 8 7 7 7 6 6 7 8 8 7 6 5 5 5 4 4 5 6 7 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 -6 -7 8
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8 7 6 5 4 3 3 4 -5 -6 7 7 6 6 -7 -8 9 9 8 7 6 6 7 7 6 6 6 5 5 6 7 7 6 5 4 4 5 5 4 4

5 5 4 3 2 2 3 3 2 2 2 1 1 -2 -3 4 5 -6 -7 8 8 7 6 5 4 3 3 4 4 3 3 -4 -5 6 6 5 4 3 3

-4 -5 6 6 5 5 -6 -7 8 8 7 6 5 5 -6 -7 8 8 7 6 5 4 3 3 3 2 2 -3 -4 -5 -6 7 7 6 5 4 3

2 2 -3 -4 -5 -6 -7 -8 9 9 8 8 8 7 6 5 4 3 2 1 1 -2 -3 -4 -5 6 -7 -8 9 9 8 7 6 6 6 5

4 3 3 -4 -5 6 6 5 4 3 3 -4 -5 6 6 5 5 -6 -7 8 9 9 8 7 6 5 4 4 4 3 3 -4 -5 -6 -7 8 9

9 8 7 6 6 6 5 5 6 7 7 6 5 4 4 5 6 7 7 6 6 6 5 4 3 2 1 1 -2 -3 -4 -5 6 -7 -8 -9 5 9

-8 7 2 2 6 4 2 6 3 -4 -5 4 7 4 5 8 5 9 -4 6 -7 2 5 -4 -2 -2 -4 -3 6 8 -3 -5 -3 9 4

-5 9 9 9 7 -2 9 -4 3 5 4 3 4 3 9 -5 3 -1 -6 2 -7 -8 -4 -8 -3 7 1 4 -3 7 3 8 4 1 -9

3 -5 6 -2 -3 6 -8 -5 7 1 -7 -1 3 2 -6 -2 -9 -5 -4 -4 6 7 -5 -5 -5 9 2 2 -4 7 -2 -3

4 -6 4 3 -4 2 -3 -4 5 2 3 -2 4 -5 -6 7 -8 7 6 5 -4 -4 5 -6 -7 8 9 -8 -7 6 6 -5 4 -1

2 -3 -4 5 -6 -7 6 -5 -4 3 2 -1 3 4 5 -6 7 6 -5 4 -3 9 9 9 9 3 -4 5 -6 -7 6 -5 -4 -3

1 -2 -3 4 5 -6 7 6 -5 4 3 -2 1 -4 5 -6 -6 7 8 -9 -8 7 6 -5 4 4 -5 -6 -7 8 -7 6 5 -4

2 -3 -2 -5 -5 6 7 8 -7 -6 5 4 -3 -6 -7 -8 -7 6 5 -6 7 8 -7 6 5 1 -2 3 -4 -5 6 -5 4

-3 2 -1 -7 4 5 -6 5 -4 7 -8 -9 -8 7 2 2 2 2 -7 8 9 8 -7 4 -5 6 -5 -4 7 1 -2 3 -4 5

-3 -4 5 -6 -7 6 5 4 -3 7 2 3 -4 5 -4 3 -2 -1 2 -3 -4 -5 -6 -7 -8 -7 6 5 -4 3 -2 -1

-5 6 7 8 -7 6 5 -4 5 -6 -7 -8 7 -6 5 4 -9 5 5 5 5 9 -4 -5 6 -7 8 7 6 -5 4 -5 -6 7 -8

-7 -6 5 1 2 -3 4 -5 -6 7 8 7 6 5 4 3 -2 1 2 -3 4 -5 4 -3 -2 -7 3 -4 -5 -6 7 6 -5 4

3 -6 5 4 -3 2 -1 -5 -6 7 -8 -7 6 -5 -6 7 8 7 6 3 -4 -5 6 7 -8 -7 -6 5 4 3

After running the raw signature through both BKL Normal Form and then Dehornoy reduction
we obtain the following 2038-generator braid:
5 5 -4 -5 6 6 -4 -5 6 -4 -5 -8 -7 8 8 -6 -5 -3 -4 -6 7 -3 -2 -4 -3 -6 5 -4 -7 -6 -5

6 -4 -5 -6 -8 7 -5 6 6 -7 -3 -2 -9 8 -7 -7 6 -5 -4 -3 -2 -4 7 -6 -5 8 -7 -6 1 1 1 -2

-3 -4 -5 -6 -7 -8 -6 -7 -3 -4 -5 -6 -2 -3 -4 -5 1 1 -2 1 1 -9 -8 -7 -6 2 -7 3 -4 -4

2 -3 1 -2 -2 1 2 5 4 3 -4 -8 -7 6 5 3 4 -9 -8 7 6 8 7 -8 9 5 6 -7 8 2 3 1 2 1 4 5 -6

7 3 4 -5 2 3 -4 2 -3 1 -2 -2 -3 1 -2 3 6 5 4 -5 -6 1 2 3 -4 -5 1 2 -3 -3 -4 1 -2 -2

1 8 -7 -6 -6 -5 -6 7 -8 2 -3 1 -2 1 1 1 -2 -3 -3 -4 -3 -4 -5 -2 -3 -4 -3 -2 -3 -4 -5

1 2 3 4 5 -6 3 4 -5 2 -3 2 3 -4 2 -3 1 -2 -2 -3 -4 -5 -6 -4 -5 -3 -4 -2 -3 1 2 3 4

5 6 -7 -9 -8 4 5 3 4 2 1 1 2 3 4 5 -6 3 4 -5 2 3 1 2 2 3 1 1 2 1 3 -4 2 -3 2 -3 -7

-6 5 -4 1 -2 -3 -4 -4 -2 1 -3 2 1 -7 6 -5 -6 -4 3 4 -5 2 3 -4 -4 2 -3 1 -2 -2 -3 1

-2 1 1 3 -2 1 2 -3 -4 6 5 1 -2 -2 -3 4 5 4 1 -2 3 4 5 -2 1 -3 2 -4 3 2 1 -5 4 5 -6

7 3 2 1 4 -5 3 -4 -4 -5 -5 2 -3 -4 1 -2 -3 -2 6 5 4 3 -4 8 7 6 -5 -6 -7 -2 -3 1 -2

1 -4 -5 -6 -3 -2 3 -4 -5 -7 6 1 2 -3 -4 -4 1 -2 -3 -2 -3 -2 1 -2 1 -2 9 -8 -7 6 5 4

3 -2 1 8 -9 7 6 5 4 3 -4 -5 -6 -7 -8 2 -3 -4 -5 -6 -7 8 9 -5 -6 7 1 -2 -3 -4 -3 -2

-3 -2 1 2 1 3 5 -4 2 -3 -3 6 5 4 -5 2 2 3 1 2 1 3 -4 -4 2 -3 1 2 -3 -3 5 4 -3 2 3 2

1 7 6 5 -6 4 -5 -6 3 -4 2 -3 -3 -4 -5 -3 -4 1 -2 -3 -2 8 7 -6 5 5 5 -4 3 -6 -5 4 -6

5 3 9 8 -9 -7 -7 6 7 5 4 7 7 7 7 6 7 -8 -9 6 -7 -8 5 1 2 1 3 2 5 -6 -7 -8 4 -5 3 -4

5 -4 3 1 3 -4 6 -5 7 -6 9 8 7 9 -8 7 -6 8 -7 -8 2 -3 -4 1 -2 3 -2 1 -2 5 4 -3 6 5 -4

-5 7 -6 1 2 1 3 -4 -5 2 -3 -3 4 -3 2 3 3 3 3 6 5 4 6 -5 3 -4 2 -3 1 -2 -4 -5 3 -2 -2

4 -3 5 -4 -3 4 4 -5 -3 -4 -5 -2 -3 -4 1 -3 -3 -3 -3 2 3 -4 3 5 8 -9 7 -8 -9 -6 -7 -8

-9 -4 -5 -6 -7 -8 2 1 1 3 -4 -5 -6 -7 2 1 3 -4 -4 -5 -6 2 -3 -4 -4 -5 1 -2 -3 4 -3

-2 -2 1 1 1 -2 1 -3 -2 5 -4 -3 -2 1 -3 2 -4 3 6 -5 4 1 8 7 -6 -7 5 -6 4 -5 3 -4 -8

7 8 6 7 5 6 -7 2 -3 4 -3 2 2 5 4 -5 -6 9 8 8 -9 -7 -8 -9 3 -4 -5 2 -3 -4 1 -2 -2 -3

1 -2 3 -4 -2 -3 -4 -5 1 -2 -3 4 -3 -2 1 5 4 3 6 5 -6 -7 -8 -8 -9 -4 -5 -6 2 1 -3 -4

-5 2 -3 -3 -4 1 -2 3 -2 4 3 -2 1 1 1 -2 -3 -4 6 -7 -8 -8 -5 -6 -7 -8 -9 1 -2 -3 -7

-8 -9 -6 -4 1 -2 3 -2 -2 4 3 5 -4 7 6 -5 8 7 -6 8 -7 9 -8 -2 -2 -2 -3 -4 -5 -6 -7 1

-2 3 -2 4 -5 3 -2 1 1 1 -2 1 -3 -4 -5 -6 7 7 7 -8 -2 -3 -4 7 -8 -9 1 -2 -3 5 4 -3 -4
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6 6 -5 -2 -3 1 1 -2 3 -2 4 -3 -2 7 6 5 7 -6 -7 -8 -9 5 -6 -6 1 4 3 2 5 4 4 3 5 4 6

-7 5 -6 4 -5 3 -4 2 -3 1 -2 1 6 5 4 3 -2 -3 1 1 -2 8 7 6 5 4 3 -2 1 9 8 7 6 5 -6 -7

-8 -9 4 -5 -6 -7 -3 -4 -5 -6 -7 2 1 2 -3 -4 -5 -6 -8 -9 1 -2 -3 -4 -5 -5 -6 -7 -6 -5

-4 -3 -2 -3 -4 -4 -3 -2 7 6 5 4 -3 5 -4 -5 7 -8 -6 -2 1 2 2 -3 -4 -5 1 -2 -3 4 -3 5

-4 6 -7 9 -8 -5 -6 -7 -8 -9 1 2 3 3 -4 -5 -6 -7 -8 3 3 -4 -5 -6 -7 2 -3 -4 -5 1 -2

-3 -4 -2 -3 -4 -5 -6 8 -7 -8 -4 -5 -3 -4 1 2 2 -3 -4 -5 -6 -7 -8 1 -2 3 -2 4 -3 5 -4

6 -5 -6 -7 -8 1 1 -2 1 2 3 3 -4 -5 3 3 -4 2 -3 1 -2 3 -2 1 6 5 4 -3 -4 -5 2 2 1 1 2

2 -3 -4 1 -2 -3 -2 -2 1 2 2 5 4 -3 2 2 7 6 5 -4 -3 2 8 7 9 -8 6 -7 -5 -6 -4 -5 3 3

-4 2 -3 1 -2 5 4 3 -2 4 -3 -4 1 1 -2 -3 1 1 -2 6 8 -7 -8 -9 -5 4 3 -2 5 4 3 1 2 3 1

2 3 -4 -5 -6 -7 -8 -9 2 -5 -4 3 2 2 1 1 -6 -5 -4 -3 2 -4 5 3 3 3 4 4 -5 -6 -5 4 5 6

2 1 6 6 6 5 5 5 4 3 3 5 4 6 5 5 -6 4 3 2 1 1 1 1 2 3 4 5 6 6 6 5 6 -7 -8 5 -6 4 -5

3 -4 2 -3 1 -2 -2 -3 5 -4 -5 7 -6 9 8 -7 -7 -2 3 -2 4 -3 5 -4 -5 1 1 -2 3 -2 1 2 2

-3 1 -2 1 3 -4 2 2 2 2 -3 5 -4 1 -2 -3 -2 -3 -4 -4 6 -5 7 -6 9 8 -9 -7 -8 -3 -4 -5

-6 -7 -8 -2 1 2 2 1 1 2 2 -3 -4 -5 1 -2 -3 -4 1 2 2 2 2 -3 1 -2 1 3 4 3 2 5 -6 4 -5

3 3 -4 6 -5 2 -3 -4 5 -4 1 -2 3 -2 4 -3 7 6 5 -4 6 -5 1 2 2 -3 2 3 3 -4 2 2 -5 2 -3

2 4 3 3 2 2 3 5 7 -6 4 4 4 3 4 -5 8 -9 7 -8 -9 -6 -7 3 -4 2 -3 1 -2 5 -6 4 -5 3 -4

-2 1 2 2 2 1 2 -3 1 -2 7 -8 6 -7 5 -6 4 -5 9 8 7 -6 9 8 -7 9 -8 -9 3 -4 5 -4 -2 -3

-4 1 1 -2 -3 4 6 -5 7 -6 -3 -4 -5 -6 8 -7 -8 -9 1 2 2 1 1 1 1 -3 -4 2 2 1 -2 -2 -3

1 1 -2 1 -5 -4 3 2 -5 -6 4 -5 3 3 -4 6 -7 5 -6 2 -3 4 -5 1 -2 1 3 -4 2 2 2 -3 5 4 6

5 1 -2 1 5 7 -6 -7 -8 4 -5 -6 -7 9 4 4 -5 -6 -6 -5 4 5 6 6 5 4 3 3 5 4 6 -7 5 -6 7

7 7 8 8 7 -6 5 4 4 5 3 3 4 3 -2 1 7 6 5 4 -3 2 3 1 2 8 7 6 5 4 -5 6 8 9 3 -5 -4 -4

2 -7 8 9 1 1 5 -4 -5 3 -4 3 -6 5 4 -5 6 3 -4 5 7 8 6 7 3 -4 5 6 9 8 7 2 3 1 2 5 4 2

6 5 7 2 3 4 1 2 3 5 4 2 2 7 8 9 7 6 5 8 7 6 4 5 3 2 1 3 3 3 -4 3 2 7 6 7 8 6 -7 6 9

-8 7 8 2 4 3 7 6 5 4 8 7 6 5 7 -6 -6 8 -7 -6 -7 -6 3 4 3 2 1 9 8 7 4 1 5 6 4 5 3 4

7 -8 -9 6 5 7 -8 6 4 3 3 -2 1 2 7 7 6 4 3 2 1 4 5 7 8 9 7 8 6 7 -3 8 -2 -2 1 2 -3 5

4 6 5 -6 -3 4 2 3 4 -7 -6 5 -7 6 7 4 -5 4 3 -4 3 8 3 9 3 -4 5 6 3 2 1 8 -4 5 3 3 4

6 5 4 2 1 4 -7 6 7 5 6 3 4 5 2 3 4 7 6 8 1 -5 4 5 2 1 2 3 4 2 1 1 6 5 4 3 -4 6 7 2

5 -4 6 -5 -4 -3 8 7 -6 -5 4 5 6 2 1 9 8 7 3 4 5 6 -2 -2 3 1 2 3 4 2 9 8 -9 7 6 5 4

3 2 1 6 8 7 9 8 -5 -4 -3 -2 -6 -5 -4 -3 -2 -7 -6 -5 6 -4 -3 -2 1 -3 2 -4 3 -5 4 -6

5 6 7 4 5 6 3 3 4 5 6 5 6 2 1 -2 3 1 2 -4 5 3 2 3 4 5 8 7 9 5 4 3 2 1 6 7 -5 4 3 2

-6 5 4 5 -8 -7 -7 6 4 -5 -5 6 6 6 -5 6 6 7 3 4 5 4 7 8 6 7 5 6 4 5 3 4 2 -3 2 7 6 5

-6 -4 3 2 1 -5 4 -3 2 -6 5 6 7 8 4 5 6 2 3 4 5 6 7 1 -2 3 4 5 6 -2 1 -3 2 -4 3 4 5

6 1 2 3 4 1 2 3 2 2 2 7 6 5 8 7 1 5 4 3 2 1 6 5 4 3 2 7 6 5 4 3 8 8 -7 6 7 5 5 4 3

7 8

Notice that one sees runs of generators after this process. This again reflects the structure of the
message encoding algorithm. In particular, the Dehornoy reduction algorithm works by replacing
certain subwords of the form ±i, . . . ,∓i with new words, and that ultimately words of the form
±j, . . . ,±j with j < i tend to survive to the end. This explains the appearance of these generators
in the obscured signature. We remark that even though these runs resemble those seen in the
encoded message E(M), they are not part of E(M), and thus no hidden information from the raw
signature is revealed.
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To validate this signature, one first needs to compute the E-Multiplication (IdN , IdSN
) ⋆E(M)

which results in the following matrix:

































29 28 26 6 23 26 8 4 28 0
19 28 6 18 18 2 11 30 14 23
25 10 27 22 6 8 7 16 15 28
0 8 12 3 4 12 25 5 16 26
16 3 3 20 5 4 7 11 11 12
27 1 30 2 29 24 26 29 19 7
13 24 17 14 25 2 21 7 24 4
21 0 7 5 10 18 15 21 26 26
24 16 3 27 8 15 2 22 7 0
0 0 0 0 0 0 0 0 0 1

































Note the zeros in the last row. This, too, is expected because of the way E-Multiplication works.

Next, one multiplies that matrix by the matrix part of Pub(S’), which results in the following
matrix:

































19 19 27 1 16 5 28 15 17 4
7 24 24 24 22 0 24 10 8 29
14 7 23 26 5 10 6 19 15 30
27 10 29 19 20 28 18 11 23 8
27 5 19 18 29 24 26 5 8 2
2 2 4 0 22 24 1 26 4 27
10 8 8 22 27 9 12 23 27 13
26 3 4 8 25 9 4 22 30 0
27 10 24 12 15 5 0 26 30 2
0 0 0 0 0 0 0 0 0 1

































Finally, one computes the E-Multiplication Pub(S) ⋆ Sig, which results in the following matrix:

































19 19 27 1 16 5 28 15 17 4
7 24 24 24 22 0 24 10 8 29
14 7 23 26 5 10 6 19 15 30
27 10 29 19 20 28 18 11 23 8
27 5 19 18 29 24 26 5 8 2
2 2 4 0 22 24 1 26 4 27
10 8 8 22 27 9 12 23 27 13
26 3 4 8 25 9 4 22 30 0
27 10 24 12 15 5 0 26 30 2
0 0 0 0 0 0 0 0 0 1

































which is obviously equal to the previous matrix by inspection. We expect there to be qN(N−1)+1 =
2455 possible matrices.
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