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Abstract. The Walnut Digital Signature Algorithm (WalnutDSA) is a group-theoretic, public-key method

that is part of the NIST Post-Quantum Cryptography standardization process. Kotov et al proposed a
heuristic algorithm to search for and remove special elements (called cloaking elements) from a WalnutDSA
signature to produce a surrogate signer private key that would enable an attacker to forge signatures of any

message. We show that by using appropriately chosen cloaking elements with the WalnutDSA signature, we
can easily defeat this attack without any significant degredation to size or performance. The use of these
cloaking elements renders WalnutDSA completely secure against this attack.

1. Introduction

The digital signature algorithm known as WalnutDSATM was introduced in [1]. It is a group theoretic
protocol which uses non linear operations in the Artin braid group BN [2] together with operations in
GL(N,Fq), the N ×N matrix group over the finite field Fq with q elements.

Recently, Kotov et al [5] proposed a heuristic algorithm which searches and removes special braid elements
(called cloaking elements) from a sequence of user generated WalnutDSA digital signatures to produce a
surrogate signer private key that allows an attacker to forge signatures for any message. The attack is
entirely group theoretic in nature and is independent of the finite field Fq and matrices over this field. The
attack is easily defeated by putting appropriately chosen additional cloaking elements into the WalnutDSA
digital signature.

2. Brief Introduction to WalnutDSATM

A core tool in group theoretic cryptography is the fact that an element of a group can be rewritten (using
the relations in the group) so that the original expression of the element cannot be recovered. Consider,
for example (for N ≥ 2), the N -strand braid group with Artin generators {b1, b2, . . . , bN−1}, subject to the
following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),(1)

bibj = bjbi, (|i− j| ≥ 2).(2)

Let R : BN → BN denote a rewriting algorithm. Well known examples are the Birman-Ko-Lee canonical
form [3] or the Dehornoy handle reduction algorithm [4]. The security of WalnutDSATM is based on the
hard problems known as Reversing E-multiplication (REM) as well as the cloaked conjugacy search problem.
E-multiplication, in its simplest form, is a function which on input of a braid element in BN outputs a pair
consisting of a matrix in GL(N,Fq) together with a permutation in SN . E-multiplication is based on the
colored Burau representation of the BN [6]. Cloaking elements of BN are defined to be braids whose output
on E-multiplication is the pair consisting of the identity matrix and the identity permutation.

Fix a hash function H. In brief, the protocol begins with a message m which is first hashed to H(m) and
then encoded as an element E(H(m)) ∈ BN . The signer’s private key consists of two nontrivial elements
in BN , denoted w,w′ (satisfying certain technical properties), and the signer’s public key will be an N ×N

1



matrix over a finite field together with a permutation on N symbols, i.e., an element in the symmetric group
SN . The signed message will be a braid in BN of the form

R
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

)

,

where R denotes a rewriting algorithm on BN and v, v1, v2 ∈ BN are appropriate cloaking elements. Signa-
ture verification can be executed rapidly by performing E-multiplication on the signature.

3. Colored Burau Representation of the Braid Group

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters) as follows: For
1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps i → i + 1, i + 1 → i, and leaves
{1, . . . , i − 1, i + 2, . . . , N} fixed. Then σi is associated to the Artin generator bi. Further, if β ∈ BN is
written as in (??), we take β to be associated to the permutation σβ = σi1 · · ·σik . A braid is called pure if
its underlying permutation is trivial (i.e., the identity permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. Next, we introduce the colored
Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N ]
)

× SN .

First, we define the N ×N colored Burau matrix (denoted CB) of each Artin generator as follows[?].

(3) CB(b1) =















−t1 1
1

1
. . .

1


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

,

For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defined by

(4) CB(bi) =

















1
. . .

ti −ti 1
. . .

1


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,

where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.

We similarly define CB(b−1
i ) by modifying (4) slightly:

CB(b−1
i ) =

















1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

















,

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.

Recall that each bi has an associated permutation σi. We may then associate to each braid generator bi
(respectively, inverse generator b−1

i ) a colored Burau/permutation pair (CB(bi), σi) (resp., (CB(b−1
i ), σi)).

We now wish to define a multiplication of such colored Burau pairs. To accomplish this, we require the
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following observation. Given a Laurent polynomial f(t1, . . . , tN ) in N variables, a permutation in σ ∈ SN

can act (on the left) by permuting the indices of the variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each entry in
the matrix, and denote the action by M 7→ σM . The general definition for multiplying two colored Burau
pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair associated with the product

b±i · b±j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(

CB(b±i ) · (
σiCB(b±j )), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) = (CB(bǫ1i1 ) ·
σi1CB(bǫ2i2 ) ·

σi1
σi2CB(bǫ3i3 )) · · · σi1

σi2
···σik−1CB(bǫkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

4. E-Multiplication and Cloaking Elements

In brief, E-Multiplication is an action of a group of ordered pairs associated with BN on a direct product
of two groups. Given an element β ∈ BN , we can associate with β both the colored Burau matrix CB(β)
(whose entries are Laurent polynomials in N variables) and the natural permutation σβ of the braid which
is an element in SN . Since permutations themselves act on the colored Burau matrices, the ordered pairs
(CB(β), σβ) form a group under the semi-direct product operation. By fixing a field Fq, and a collection of
N invertible elements in Fq, {τ1, . . . , τN}, termed t-values, we can define the right action of (CB(β), σβ) on
the ordered pair (M,σ) ∈ GLN (Fq)× SN :

(M,σ) ⋆ (CB(β), σβ) =
(

M · σ
(

CB(β
)

) ↓t-values, σ ◦ σβ

)

,

where the ↓t-values indicates the polynomials are evaluated at the t-values. While the Laurent polynomials
which would naturally occur as entries of the colored Burau matrices would become computationally un-
manageable, the generators bi of BN have sparse colored Burau matrices, and, hence, E-Multiplication can
be evaluated very efficiently and rapidly.

The above discussion of an infinite group acting on a finite group necessitates the existence of stabilizing
elements in the group BN . With this in mind, we have the following:

Definition (Cloaking element) Let m ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure braid subgroup
of BN (i.e., the permutation associated to v is the identity) is termed a cloaking element of (m,σ) if it
satisfies (m,σ) ⋆ v = (m,σ).

Thus a cloaking element will essentially disappear when E-Multiplication is evaluated. Since stabilizing
elements of a group action form a subgroup, the following proposition is immediate:

Proposition 4.1. The set of braids that cloak a specific ordered pair (m,σ) forms a subgroup of BN .

It should be remarked that when cloaking elements are constructed in the manner above, such elements
only depend on the permutation σ. Thus, with a small abuse of language, we can say the element v cloaks
for the permutation σ without any ambiguity.

Definition (κ cloaking) Given an element β ∈ BN , the output of κ iterations of randomly inserting cloaking
elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).
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5. WalnutDSATM Signature Generation and Verification

For β ∈ BN let P(β) denote the E-multiplication of β against the identity element, i.e.,

P(β) = (IdN , IdSN
) ⋆ β

where IdN is the N × N identity matrix and IdSN
is the identity element in the symmtric group SN . The

Signer’s private key consists of two random freely reduced braids w,w′ ∈ BN . The Signer’s public key is
(

P(w), P(w′)
)

.

Fix a hash function H. To sign a message m ∈ {0, 1}∗ the Signer performs the following steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 such that

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).

− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

) )

, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

(5) Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on the right is
the usual matrix multiplication. The signature is valid if and only if (5) holds and the signature has length
≤ 2L where L is a certain positive integer such that all valid WalnutDSATM signatures have length in the
range [L, 2L].

6. The Kotov, Menshov, Ushakov Attack

The attack proceeds by collecting a number of messages, together with their associated WalnutDSA
signatures, which have all been generated by a single user whose private key is denoted by (w,w′).

Next, a heuristic method is used on each of the signatures to search and remove the specified cloaking
elements v, v1, v2 from each of the signatures. The search relies on the attacker knowing the permutations
that each of the three cloaking elements v, v1, v2 are cloaking for.

Letting σ denote one of these permutations, the attacker searches for locations in a signature where σ−1(a)
and σ−1(b) are switched (see [1] for the discussion of τa, τb). This can be explained as follows. Since a braid
in BN is a configuration of strands connecting N equally spaced points on a line with another N equally
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spaced points on a parallel line, one can search for subwords of the braid with the property that the strand
starting at the point σ−1(a) crosses the strand starting at the point σ−1(b). The attack further assumes
that cloaking elements are of the form ub±2

i u−1 (i.e., a conjugate) where the permutation associated to u

maps i to σ−1(a) and i + 1 to σ−1(b). Writing ub±2
i u−1 = ubǫib

ǫ
iu

−1 with ǫ = ±1 the attack attempts to
find the location of bǫi and replaces it with its inverse b−ǫ

i resulting in the cloaking element turning into
ub−ǫ

i bǫiu
−1 = Id where Id is the identity element in the braid group. If successful, this procedure effectively

deletes the cloaking element. These manipulations do not always work. To make the attack more effective
Kotov et al [5] perform the above procedure many times on a pair of signatures S1, S2 generating two lists

of altered signatures {S
(1)
1 , . . . , S

(k)
1 }, {S

(1)
2 , . . . , S

(ℓ)
2 }. The attack attempts to braid minimize

(

S
(i)
1

)

·
(

S
(j)
2

)−1

, (for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ),

which may remove the cloaking element. Since it is assumed that there are only three cloaking elements
which cloak for known permutations the heuristic attack proceeds as above to systematically remove the
three cloaking elements.

If the three cloaking elements are successfully removed it is then possible to construct a surrogate for the
private key (w,w′) of the signer as follows. With the cloaking elements removed, the signature of a message
mi takes the form

Sig(mi) = w−1 · E(H(mi)) · w
′.

Assuming that the attacker has signatures for k messages, m1, . . . ,mk, the sequence of products

Sig(mi) · Sig(mi+1)
−1 = w−1 · E(H(mi)) · E(H(mi+1))

−1 · w,

yield a set of simultaneous conjugacy equations whose solution will be a surrogate of the signer’s private key.
This surrogate private key can then be used to forge signatures of further messages.

7. Defeating the attack

The heuristic attack of Kotov et al [5] can be easily defeated by introducing concealed cloaking elements
into the WalnutDSA signature. Following [1], we fix a braid β, say

β = bǫ1i1 · · · b
ǫℓ
iℓ
,

and choose some point 1 ≤ k ≤ ℓ. Clearly, β = x1 · x2 where x1 = bǫ1i1 · · · b
ǫk−1

ik−1
and x2 = bǫkik · · · bǫℓiℓ , and,

hence, for any matrix/permutation pair (m0, σ0), we have that (m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2.

We can generate a cloaking element v for the product of σ0 · σx1
where σx1

deotes the permutation
associated with x1. By construction, given any matrix M we have that (M,σ0 · σx1

) ⋆ v = (M,σ0 · σx1
).

Since (m0, σ0) ⋆ x1 takes the form (m0, σ0) ⋆ x1 = (M, , σ0 · σx1
). It follows that

(m0, σ0) ⋆ β = ((m0, σ0) ⋆ x1) ⋆ x2

= (M,σ0 · σx1
) ⋆ x2

= (M,σ0 · σx1
) ⋆ v ⋆ x2

= ((m0, σ0) ⋆ x1) ⋆ v ⋆ x2 = (m0, σ0) ⋆ x1 ⋆ v ⋆ x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,

which has the property that (m0, σ0) ⋆ β = (m0, σ0) ⋆ β
′. We shall refer to this inserted cloaking element as

a concealed cloaking element.

It is the presence of κ concealed cloaking elements (for sufficiently large κ) that effectively blocks this
attack. The key point is that for concealed cloaking elements we do not know the permutation that is being
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cloaked. In general, knowing that κ concealed cloaking elements have been placed in a nested fashion in a
known braid, it would require (N !)κ searches to find them. To insure κ-bit security we would require

(N !)κ > 2κ,

and hence

κ > Security Level/ log2(N !).

We have explored possible birthday attacks and have ruled out obvious ways to use a birthday attack
to discover all the concealed cloaking elements. Indeed, multiple cloaking elements could use the same
permutation but each would still need to individually be discovered. Without access to a birthday attack,
in the case of N = 10, and a security level of 128 we can comfortably take κ = 6 (which results in a work
factor of 2130.74). Likewise, when N = 10 and the security level is 256, taking κ = 12 is sufficient (resulting
in a work factor of 2261.49).

We also note that concealed cloaking elements have a secondary purpose in blocking this attack. Recall
that the attack not only relies on knowing the permutation being cloaked, but it also relies on a cloaking
element being in the form of a conjugate. By placing a concealed cloaking element inside one side, e.g.
converting v = ub±2

i u−1 to v = κ(u)b±2
i u−1, we block the attack in both ways. Specifically, while the

permutation v is cloaking for is known, it is no longer a conjugate, and while the inner-most concealed
cloaking element is a conjugate, the permutation it is cloaking for is not known.

With N = 10, a cloaking element using a random permutation for u averages 87.16 Artin generators (with
a standard deviation of 22.03). This can be shortened by choosing the permutation of u carefully (note that
this is different than the permutation being cloaked). If we add 6 concealed cloaking elements (necessary for
128-bit security), this implies an average signature-size increase of approximately 523 generators. However,
after running BKL and Dehornoy, additional size reductions can be made. This results in an average signature
increase from 1909 to 2037 Artin generators, or an increase in only 6.7%.

Because signature validation performance is linearly correlated with the length of the signature, this 6.7%
average length increase results in a 6.7% increase in the average time required to validate signatures.

8. Conclusion

WalnutDSA is a group-theoretic, public-key method that is part of the NIST Post-Quantum Cryptography
standardization process. Kotov et al proposed a heuristic algorithm to search for and remove cloaking
elements from a WalnutDSA signature to produce a surrogate signer private key which allows an attacker
to forge signatures of any message. We show that by putting in additional, concealed cloaking elements
into the WalnutDSA signature we can easily defeat this attack without any significant degredation to size
or performance, rendering WalnutDSA completely secure against this attack.

Specifically, we find that when we add a sufficient number of concealed cloaking elements to block the
attack to a 128-bit security level we see only a 6.7% increase in signature size on average, which results in
an equivalent 6.7% increase in signature verification time. This enables WalnutDSA to remain secure and
performant on all supported platforms.
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