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“Little or No Security”

The IoT Has a Problem



The IoT Has a Problem

• The small devices that power the IoT are 
insecure.

• These devices provide few, if any, options 
for authentication and data integrity.

• They lack the computing, memory, 
and/or energy resources needed to 
implement today’s standard security 
methods.

• This leaves most IoT systems vulnerable 
to attack. 



Real-World Problem:  Securing Device Firmware
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Attackers can modify the 
firmware in flash and take 
over the device!



Firmware Security Solution Architectures

• Do nothing
• Be an Ostrich!

• Hashing
• Too brittle (can’t update code)

• Symmetric Cipher / Message Authentication Codes (MAC)
• Key management problem

• Public-Key Signature
• Too slow!
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Symmetric Cryptography
• Symmetric methods have been around for millennia



Challenge: 
• Securely distribute keys
• Secure all databases
• Single breach – System compromised

Key Management Challenge



Solution: Asymmetric (Public-Key) Cryptography

• Solves the key management problem
• Several methods to choose from:

• RSA
• Elliptic Curve (ECC)
• Diffie-Hellman (DH)
• Lattice Methods



What’s Wrong With Current Methods?

• ECC, RSA, and DH work fine on large 
systems (laptops, servers)

• Implementations are often too big for 
small devices

• Sensors, actuators, IoT

• If they can be made to fit, they can take a 
long time to run.

• Specifically, they each run in quadratic time.



Why Is This Hard?

• Legacy systems like ECC, RSA, and DH 
multiply very large (256-4096 bits) 
numbers.

• This is even harder on 16- or even 8-bit 
processors!

• Reason: The complexity of breaking 
large numbers into 16- or 8-bit chunks 
and then piecing them all back 
together!



Cryptographic Taxonomy
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Group Theoretic Cryptography

• Hard problem over 100 years old
• GTC studied since mid-1970s 

• Same timeframe as RSA and DH

• Calculates using small numbers (operands)
• 8-32-bits vs 256-4096 in ECC, RSA, and DH

• Small, fast, and ultra-low-energy
• Leverages:

• Structured groups
• Matrices and permutations
• Arithmetic over finite fields



GTC Deconstructed
• Every public-key method is based on several 

math foundations.
• GTC is no different.

• GTC leverages structured groups, matrices, 
permutations, and arithmetic over finite fields.

• The structures group used for GTC is the Braid 
Group.

• Note: there have been other uses of the Braid 
Group for cryptography (some of which have 
been broken). GTC is different than those.

• Note: not to be confused with “Braid Group 
Cryptography”



Our Breakthrough: E-Multiplication
• A Group-Theoretic, One-Way Function designed 

for low-resource/constrained environments
• First published in 2005, subject to significant 

analysis and never broken
• Quantum-resistant to all known attacks
• Runtime grows linearly with increase in security 

level
• Rapidly computable (due to a sparse matrix)

• Requires n multiplies and 2n additions, which can be 
completed in a single clock cycle in lightweight 
hardware

• Building block for our cryptographic methods



E-Multiplication: The Basis of GTC
E-Multiplication (published in 2005), SecureRF’s cryptography building block, is based 

on GTC to deliver size, speed, and power breakthroughs

Group Theoretic Cryptography (GTC) 
• Hard problem over 100 years old
• GTC studied since mid-1970s 
• Calculates using small numbers

 8-32-bits vs 256-4096 in ECC, RSA, DH

• Small, fast, and ultra-low-energy
• Leverages:

 Structured groups
 Matrices and permutations
 Arithmetic over finite fields
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Walnut Digital Signature Algorithm Process



“The National Security Agency is advising US agencies and 
businesses to prepare for a time in the not-too-distant 
future when the cryptography protecting virtually all e-

mail, medical and financial records, and online transactions 
is rendered obsolete by quantum computing.”

Source: Ars Technica, August 21, 2015

D-Wave System Chip with 
quantum Properties

Quantum Resistant: Future-Proof Now

SecureRF’s methods are quantum-resistant to all known attacks

“…We must begin now to prepare our information security 
systems to be able to resist quantum computing.”

Source: NIST Report on Post-Quantum Cryptography February 2016



Quantum Resistance

• Two important quantum methods: Shor's 
Algorithm and Grover's Search Algorithm

• Grover's Search Algorithm reduces the 
security level (e.g., AES-128 becomes 64-bit 
secure)

• Doubling the security of GTC requires doubling the 
key size which only doubles the runtime

• Shor: Breaks ECC, RSA, and DH by quickly 
factoring or solving the discrete log problem

• Requires the method's math be Finite, Cyclic, and 
Commutative

• GTC is neither Cyclic nor Commutative, and the 
underlying group is Infinite, so Shor does not apply



Securing Device Firmware
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Signed Firmware is checked 
by the validator using the 
signer’s public key.
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Our Secure Boot Architecture



WalnutDSA in Practice



Integrating WalnutDSA into MCUboot

• MCUboot comes with TinyCrypt ECDSA
• We added support for WalnutDSA

• WalnutDSA ROM: 1,852 Bytes
• ECDSA ROM: 6,062 Bytes

• Code size went down by over 4KB with WalnutDSA!



WalnutDSA + MCUboot Performance

• Instrumented code to obtain boot-time cycle counts:
• ECDSA: 15,884,979 cycles
• WalnutDSA: 634,224 cycles (25x faster!)

• Faster, Smaller, and quantum-resistant!



Secure Firmware Boot/Update Ecosystem



How you can use WalnutDSA with MCUboot
A. Configure Mynewt

1. Add mcuboot repository to your project.yml file
2. Update your bootloader’s pkg.yml to add MCUboot as a dependency
3. Create a new target for the bootloader targeting MCUboot
4. Add syscfg variable BOOTUTIL_SIGN_WALNUT to syscfg.yml

B. Add WalnutDSA public key to MCUboot
1. Define a new Mynewt package for exporting WalnutDSA public key
2. Replace ECDSA public key in image_sign_pub.c with WalnutDSA key

C. Alter MCUboot to detect & verify WalnutDSA signatures
1. Introduce WalnutDSA verification code
2. Add BOOTUTIL_SIGN_WALNUT preprocessor definitions

(see A Future-Proof Performance Enhancement for Secure MCUboot for more details)



IoT Embedded SDKs

• Available for your development and assessment: 
• IoT embedded SDKs for a wide range of 8-, 16-, and 32-bit 

processors
• Android SDK
• Windows SDK
• Linux SDK
• iOS SDK

• Request your SDK: info@securerf.com
• More information: www.securerf.com/products/security-tool-kits/

mailto:info@securerf.com
http://www.securerf.com/products/security-tool-kits/


Any Questions?
SecureRF Corporation

Company Headquarters California Office
100 Beard Sawmill Road, Suite 300 75 East Santa Clara, Floor 6
Shelton, CT 06484 USA San Jose, CA 95113 USA
1-203-227-3151 1-203-227-3151
info@securerf.com info@securerf.com

mailto:info@securerf.com
mailto:info@securerf.com
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