
A Future-Proof Performance Enhancement for 
Secure MCUboot

Derek Atkins, Chief Technology Officer

February 28, 2019



“Little or No Security”

The IoT Has a Problem



The IoT Has a Problem

• The small devices that power the IoT are 
insecure.

• These devices provide few, if any, options 
for authentication and data integrity.

• They lack the computing, memory, 
and/or energy resources needed to 
implement today’s standard security 
methods.

• This leaves most IoT systems vulnerable 
to attack. 



Real-World Problem:  Securing Device Firmware

MCU

OTP

RAM
FLASH
Firmware

Attackers can modify the 
firmware in flash and take 
over the device!



Firmware Security Solution Architectures

• Do nothing
• Be an Ostrich!

• Hashing
• Too brittle (can’t update code)

• Symmetric Cipher / Message Authentication Codes (MAC)
• Key management problem

• Public-Key Signature
• Too slow!



Cryptographic Taxonomy
Security 

Paradigms

Private Key 
Systems

Public Key 
Systems

Triple DES DES AES Diffie-Hellman and Digital 
Signature Algorithms

RSA

Elliptic 
Curve

Lattice 
Methods

Group 
Theoretic



Symmetric Cryptography
• Symmetric methods have been around for millennia



Challenge: 
• Securely distribute keys
• Secure all databases
• Single breach – System compromised

Key Management Challenge



Solution: Asymmetric (Public-Key) Cryptography

• Solves the key management problem
• Several methods to choose from:

• RSA
• Elliptic Curve (ECC)
• Diffie-Hellman (DH)
• Lattice Methods



What’s Wrong With Current Methods?

• ECC, RSA, and DH work fine on large 
systems (laptops, servers)

• Implementations are often too big for 
small devices

• Sensors, actuators, IoT

• If they can be made to fit, they can take a 
long time to run.

• Specifically, they each run in quadratic time.



Why Is This Hard?

• Legacy systems like ECC, RSA, and DH 
multiply very large (256-4096 bits) 
numbers.

• This is even harder on 16- or even 8-bit 
processors!

• Reason: The complexity of breaking 
large numbers into 16- or 8-bit chunks 
and then piecing them all back 
together!



Cryptographic Taxonomy
So Where Do We Go? Security 

Paradigms

Private Key 
Systems

Public Key 
Systems

Triple DES DES AES Diffie-Hellman and Digital 
Signature Algorithms

RSA

Elliptic 
Curve

Lattice 
Methods

Group 
Theoretic



Group Theoretic Cryptography

• Hard problem over 100 years old
• GTC studied since mid-1970s 

• Same timeframe as RSA and DH

• Calculates using small numbers (operands)
• 8-32-bits vs 256-4096 in ECC, RSA, and DH

• Small, fast, and ultra-low-energy
• Leverages:

• Structured groups
• Matrices and permutations
• Arithmetic over finite fields



GTC Deconstructed
• Every public-key method is based on several 

math foundations.
• GTC is no different.

• GTC leverages structured groups, matrices, 
permutations, and arithmetic over finite fields.

• The structures group used for GTC is the Braid 
Group.

• Note: there have been other uses of the Braid 
Group for cryptography (some of which have 
been broken). GTC is different than those.

• Note: not to be confused with “Braid Group 
Cryptography”



Our Breakthrough: E-Multiplication
• A Group-Theoretic, One-Way Function designed 

for low-resource/constrained environments
• First published in 2005, subject to significant 

analysis and never broken
• Quantum-resistant to all known attacks
• Runtime grows linearly with increase in security 

level
• Rapidly computable (due to a sparse matrix)

• Requires n multiplies and 2n additions, which can be 
completed in a single clock cycle in lightweight 
hardware

• Building block for our cryptographic methods



E-Multiplication: The Basis of GTC
E-Multiplication (published in 2005), SecureRF’s cryptography building block, is based 

on GTC to deliver size, speed, and power breakthroughs

Group Theoretic Cryptography (GTC) 
• Hard problem over 100 years old
• GTC studied since mid-1970s 
• Calculates using small numbers

 8-32-bits vs 256-4096 in ECC, RSA, DH

• Small, fast, and ultra-low-energy
• Leverages:

 Structured groups
 Matrices and permutations
 Arithmetic over finite fields

Security 
Strength

Number of
Bit 

Operations

(Time)
Computing
Threshold

RSA ECC

Embedded
System

GTC



Walnut Digital Signature Algorithm Process



“The National Security Agency is advising US agencies and 
businesses to prepare for a time in the not-too-distant 
future when the cryptography protecting virtually all e-

mail, medical and financial records, and online transactions 
is rendered obsolete by quantum computing.”

Source: Ars Technica, August 21, 2015

D-Wave System Chip with 
quantum Properties

Quantum Resistant: Future-Proof Now

SecureRF’s methods are quantum-resistant to all known attacks

“…We must begin now to prepare our information security 
systems to be able to resist quantum computing.”

Source: NIST Report on Post-Quantum Cryptography February 2016



Quantum Resistance

• Two important quantum methods: Shor's 
Algorithm and Grover's Search Algorithm

• Grover's Search Algorithm reduces the 
security level (e.g., AES-128 becomes 64-bit 
secure)

• Doubling the security of GTC requires doubling the 
key size which only doubles the runtime

• Shor: Breaks ECC, RSA, and DH by quickly 
factoring or solving the discrete log problem

• Requires the method's math be Finite, Cyclic, and 
Commutative

• GTC is neither Cyclic nor Commutative, and the 
underlying group is Infinite, so Shor does not apply



Securing Device Firmware

MCU

OTP

RAM
FLASH

Firmware & 
Signature

Signed Firmware is checked 
by the validator using the 
signer’s public key.

Trusted Loader
Signature Validator
Signer’s Public Key



Our Secure Boot Architecture



WalnutDSA in Practice



Integrating WalnutDSA into MCUboot

• MCUboot comes with TinyCrypt ECDSA
• We added support for WalnutDSA

• WalnutDSA ROM: 1,852 Bytes
• ECDSA ROM: 6,062 Bytes

• Code size went down by over 4KB with WalnutDSA!



WalnutDSA + MCUboot Performance

• Instrumented code to obtain boot-time cycle counts:
• ECDSA: 15,884,979 cycles
• WalnutDSA: 634,224 cycles (25x faster!)

• Faster, Smaller, and quantum-resistant!



Secure Firmware Boot/Update Ecosystem



How you can use WalnutDSA with MCUboot
A. Configure Mynewt

1. Add mcuboot repository to your project.yml file
2. Update your bootloader’s pkg.yml to add MCUboot as a dependency
3. Create a new target for the bootloader targeting MCUboot
4. Add syscfg variable BOOTUTIL_SIGN_WALNUT to syscfg.yml

B. Add WalnutDSA public key to MCUboot
1. Define a new Mynewt package for exporting WalnutDSA public key
2. Replace ECDSA public key in image_sign_pub.c with WalnutDSA key

C. Alter MCUboot to detect & verify WalnutDSA signatures
1. Introduce WalnutDSA verification code
2. Add BOOTUTIL_SIGN_WALNUT preprocessor definitions

(see A Future-Proof Performance Enhancement for Secure MCUboot for more details)



IoT Embedded SDKs

• Available for your development and assessment: 
• IoT embedded SDKs for a wide range of 8-, 16-, and 32-bit 

processors
• Android SDK
• Windows SDK
• Linux SDK
• iOS SDK

• Request your SDK: info@securerf.com
• More information: www.securerf.com/products/security-tool-kits/

mailto:info@securerf.com
http://www.securerf.com/products/security-tool-kits/


Any Questions?
SecureRF Corporation

Company Headquarters California Office
100 Beard Sawmill Road, Suite 300 75 East Santa Clara, Floor 6
Shelton, CT 06484 USA San Jose, CA 95113 USA
1-203-227-3151 1-203-227-3151
info@securerf.com info@securerf.com

mailto:info@securerf.com
mailto:info@securerf.com

	A Future-Proof Performance Enhancement for Secure MCUboot
	The IoT Has a Problem
	The IoT Has a Problem
	Real-World Problem:  Securing Device Firmware
	Firmware Security Solution Architectures
	Cryptographic Taxonomy
	Symmetric Cryptography
	Slide Number 8
	Solution: Asymmetric (Public-Key) Cryptography
	What’s Wrong With Current Methods?
	Why Is This Hard?
	Cryptographic Taxonomy�� So Where Do We Go?
	Group Theoretic Cryptography
	GTC Deconstructed
	Our Breakthrough: E-Multiplication�
	Slide Number 16
	Walnut Digital Signature Algorithm Process
	Quantum Resistant: Future-Proof Now
	Quantum Resistance
	Securing Device Firmware
	Our Secure Boot Architecture
	WalnutDSA in Practice
	Integrating WalnutDSA into MCUboot
	WalnutDSA + MCUboot Performance
	Secure Firmware Boot/Update Ecosystem
	How you can use WalnutDSA with MCUboot
	IoT Embedded SDKs
	Any Questions?

